
ABSTRACT

Title of Dissertation: ENGINEERING A CONTROL SYSTEM
FOR A LOGICAL QUBIT-SCALE
TRAPPED ION QUANTUM COMPUTER

Andrew Russ Risinger
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Christopher Monroe
Department of Physics
Joint Quantum Institute

Quantum computing is a promising field for continuing to develop new computing

capabilities, both in its own right and for continued gains as Moore’s Law growth ends.

Trapped ion quantum computing is a leading technology in the field of quantum com-

puting, as it combines the important characteristics of high fidelity operations, individual

addressing, and long coherence times. However, quantum computers are still in their in-

fancy; the first quantum computers to have more than a handful of quantum bits (qubits)

are less than a decade old. As research groups push the boundaries of the number of qubits

in a system, they are consistently running into engineering obstacles preventing them from

achieving their goals. There is effectively a knowledge gap between the physicists who

have the capability to push the field of quantum computing forward, and the engineers

who can design the large-scale & reliable systems that enable pushing those envelopes.

This thesis is an attempt to bridge that gap by framing trapped ion quantum computing in

a manner accessible to engineers, as well as improving on the state-of-the-art in quantum

computer digital and RF control systems.

We also consider some of the practical and theoretical engineering challenges that

arise when developing a leading-edge trapped ion quantum computer capable of demon-

strating error-corrected logical qubits, using trapped 171Yb+ qubits. There are many fun-

damental quantum operations that quantum information theory assumes, yet which are

quite complicated to implement in reality. First, we address the time cost of rearranging a

chain of ions after a scrambling collision with background gases. Then we consider a gate

waveform generator that reduces programming time while supporting conditional quan-

tum gates. Next, we discuss the development of a digital control system custom-designed

for quantum computing and quantum networking applications. Finally, we demonstrate

experimental results of the waveform generator executing novel gate schemes on a chain

of trapped ions. These building blocks together will unlock new capabilities in the field

of trapped ion quantum computers.

ENGINEERING A CONTROL SYSTEM FOR A LOGICAL
QUBIT-SCALE TRAPPED ION QUANTUM COMPUTER

by

Andrew Russ Risinger

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Professor Christopher Monroe, Chair/Advisor
Professor Ronald Walsworth
Professor Donald Yeung
Professor Norbert M. Linke
Professor Christopher Jarzynski

© Copyright by
Andrew Russ Risinger

2022

Dedication

To my grandmother, Darlene Floss.

ii

Acknowledgements

All of the work that is presented here is the culmination of many people’s designs,

efforts, and discussions. To everyone who made this work possible, a great many thanks.

First, I would like to thank my family who encouraged my interest in engineering,

and made it a viable career path. Mom, Dad, Zach, and Josh, I am ever grateful for my

formative years growing up with you.

My wife, Kate, is simply the most supportive person. She encouraged me as I chose

a career path that caused us to be apart during the beginning of graduate school, and

then sacrificed to move to Maryland as I finished graduate school. She was continuously

uplifting as I struggled with long days, long nights, and doubts about my career path.

Words cannot express how thankful I am.

There are too many people to name who exposed me to the potential of a graduate

degree in quantum computing, but a few deserve special mention. First, I am thankful for

Jeff Leavitt and Charley Adams who allowed a college intern to transition from test engi-

neering to learning about superconducting circuits. There were many Northrop Grumman

employees who taught me about superconducting circuits and encouraged me to pursue

a graduate degree, especially Sergey Novikov, Zach Keene, Moe Khalil, and John Fusco.

Finally, Ken Zick gave me a chance to work on the exciting IARPA QEO program, and

my first taste of graduate research into computer architectures for quantum computers.

iii

On top of individuals, I am also thankful for Northrop Grumman Corporation and its

employees as a whole, who provided scholarships, internships when circumstances were

difficult, and opened career paths that I did not foresee out of high school.

Next, I would like to thank my advisor Christopher Monroe for accepting a com-

puter engineer with little physics background into his research group. I grew so much

through exposure to many different topics that I had no experience in. I am also thankful

for the many students comprising the diverse group of ion trappers at UMD, who were

unendingly friendly and open to sharing knowledge both work-related and fun-related.

I would like to acknowledge all the EURIQA labmates, both current and former,

whose tireless work brought our lab from an idea to a (usually) functioning ion trap quan-

tum computer. In rough chronological order: Jason Amini, Jonathan Mizrahi, Kai Hudek,

Marko Cetina, Kristin Beck, Michael Goldman, Kevin Landsman, Laird Egan, Daiwei

Zhu, Bahaa Harraz, Crystal Noel, Debopriyo Biswas, Or Katz, Lei Feng, and Yichao Yu.

While I did not work directly with all of you, your efforts and dedication made the work

of EURIQA Breadboard possible. You are all also responsible for teaching me everything

that I know about trapping ions.

Kristi Beck, Wen Lin Tan, Mika Chmielewski, and Crystal Noel were all especially

kind and welcoming. We had many great lunches and random events, discussing a wide

variety of shared interests such as board games, mac and cheese, Ultimate Frisbee, climb-

ing, art, and many others.

I am also thankful for my Electrical and Computer Engineering graduate student

friend group: Rajdeep, Devesh, Omid, Abhishek, Ankit, Ananth, Jooik, Sheung, &

Austin. Thank you for the friendship during the many classes, hangout sessions, and

iv

study breaks. You helped UMCP feel like home. Thank you also to David and Tristan for

the friendship and great experiences playing IM volleyball together, at a time when I was

feeling very stressed. Thank you to the UMD ECE staff, who were essential in fostering

a welcoming and healthy atmosphere, and for a lot of guidance: Melanie Prange, Emily

Irwin, and Bill Churma.

To the many friends that I have made over the years who supported me, you know

who you are and you are ever in my heart. Friends from Mt. Hebron High School, 1MC,

Alpha Sigma AΣ, Grove City College, Aletheia College Park, and many others.

Finally, I must again acknowledge the support and love of my wife Kate. A PhD is

a long never-ending journey, and you were there every step of the way.

v

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents vi

List of Tables x

List of Figures xi

List of Program Listings xiii

List of Abbreviations and Definitions xiv

Chapter 1: Introduction 1
1.1 Classical Computers . 1
1.2 Quantum Computing . 3

1.2.1 Applications of Quantum Computing 4
1.2.2 Current State of Quantum Computing 4

1.3 Chapter Summaries . 4
1.3.1 Chapter 1: Introduction . 4
1.3.2 Chapter 2: Quantum Computing Basics 5
1.3.3 Chapter 3: Ion Trap Quantum Computing 5
1.3.4 Chapter 4: Control System Design 6
1.3.5 Chapter 5: RFSoC-based Coherent Control System 6
1.3.6 Chapter 6: PulseCompiler Waveform Synthesis & Specification . 7
1.3.7 Chapter 7: Experiments with Ion Trap Control System 7
1.3.8 Chapter 8: Advanced Ion Trap Operations 7
1.3.9 Appendices . 8

Chapter 2: Quantum Computing Basics 10
2.1 Quantum Computing Overview . 10

2.1.1 Motivation for Quantum Computing 10
2.2 Quantum vs Classical Computing . 11

2.2.1 Criteria for a Quantum Computer 12
2.3 Quantum States . 14

2.3.1 Digital States . 14

vi

2.3.2 Qubit . 14
2.3.3 Multi-Qubit States . 20
2.3.4 Key Quantum Physics Principles 23

2.4 Quantum Operations . 29
2.4.1 State Preparation . 29
2.4.2 Single-Qubit Operations . 30
2.4.3 Multi-Qubit Operations . 31
2.4.4 Quantum State Readout . 32

2.5 Quantum Algorithm Abstractions . 33
2.5.1 Quantum Circuit Model . 35

2.6 Breaking Abstractions: Hardware Details 40
2.6.1 Qubit labels: Physical vs Virtual 40
2.6.2 Qubit Connectivity . 43
2.6.3 Native Gate Set . 44

2.7 Alternative Quantum Computing Paradigms 45
2.7.1 Quantum Simulation vs Gate-Model 46
2.7.2 Adiabatic Quantum Computing vs Gate-Model 47

Chapter 3: Ion Trap Quantum Computing 50
3.1 What is a Trapped Ion Quantum Computer? 50
3.2 Ytterbium Ions . 50
3.3 Ion Trap Physical Hardware . 52

3.3.1 Ion Trap . 54
3.3.2 Out-of-Vacuum Components . 58

3.4 171Yb+ Atomic Physics . 60
3.4.1 What are atomic levels? . 60
3.4.2 171Yb+ Atomic Levels . 62

3.5 Operations . 64
3.6 Ion (Non-Qubit) Operations . 64

3.6.1 Ion Loading Operations . 65
3.6.2 State Preparation Operations . 67
3.6.3 State Measurement Operations 72
3.6.4 Ion Chain Operations . 76

3.7 Qubit Operations . 81
3.7.1 Raman Operations . 81
3.7.2 Single-Qubit Operations . 88
3.7.3 Multi-Qubit Operations . 92

3.8 Experiment Cycle . 96
3.8.1 Pre-Experiment . 96
3.8.2 State Preparation . 98
3.8.3 Experiment Execution . 98
3.8.4 State Measurement/Readout . 100

Chapter 4: Control System Design 102
4.1 Motivation . 102

vii

4.2 Quantum Computers as Embedded Systems 103
4.2.1 Challenges of Quantum Embedded Systems 103

4.3 Comparing Existing Qubit Support System Requirements 106
4.4 Control System Realms . 107
4.5 Ion Trap DAC Control . 108
4.6 Digital Control System . 110
4.7 ARTIQ Experiment Design . 112

Chapter 5: RFSoC-based Coherent Control System 116
5.1 Need for Flexible Waveform Control . 116
5.2 Waveform Generation Trade-offs . 117

5.2.1 Waveform Generation Requirements 117
5.3 RFSoC System Description . 120
5.4 RFSoC Physical Hardware . 121
5.5 RFSoC Feature Breakdown . 124

5.5.1 RFSoC Frequency Feedforward 127
5.5.2 RFSoC Pulse Control . 128
5.5.3 RFSoC Crosstalk . 136
5.5.4 RFSoC Single-channel Frequency Synchronization 139
5.5.5 RFSoC Real-Time Pulse Feedback 140

5.6 RFSoC Inputs & Outputs . 142
5.6.1 RFSoC Inputs . 142
5.6.2 RFSoC Outputs . 142

5.7 Conclusion . 143

Chapter 6: PulseCompiler Waveform Synthesis & Specification 144
6.1 PulseCompiler . 144

6.1.1 PulseCompiler Overview . 146
6.1.2 Implementation . 146
6.1.3 Uploading to A RFSoC . 150

6.2 RFSoC Output Modulation . 151
6.3 OpenPulse Waveforms . 152

6.3.1 Why OpenPulse? . 152
6.3.2 PulseCompiler vs OpenPulse Assumptions 153
6.3.3 PulseCompiler & OpenPulse Schedules 153

6.4 Converting Circuits to RFSoC Output 155
6.4.1 What is a Qiskit Backend? . 158
6.4.2 Schedule to Channel Sequence Conversion 159

Chapter 7: Experiments with Ion Trap Control System 161
7.1 Experiments Enabled by RFSoC Control System 161
7.2 N-Body Gates . 162

7.2.1 N-body Gate Scheme . 163
7.2.2 Executing N-Body Gate . 168
7.2.3 N-Body Gate Results . 176

viii

Chapter 8: Advanced Ion Trap Operations 179
8.1 Ion Indexing . 179

8.1.1 Center-Ion Indexing . 182
8.2 Ion Split-Merge Overview . 184
8.3 Ion Chain Sorting . 186

8.3.1 Chain Sorting Operation . 188
8.3.2 Chain Sorting Algorithm . 191
8.3.3 Comparison of Recalibration vs Sorting Time Cost 194

8.4 Ion-Photon Entanglement Generator . 200

Chapter 9: Outlook 203

Appendix A: Python: Distribution and Best Practices 205
A.1 Python Overview . 205
A.2 Python Packaging . 207

A.2.1 Python Libraries Overview . 207
A.2.2 Python Package Managers . 208
A.2.3 Python Environments . 208

A.3 Python Best Practices . 210
A.3.1 Recommended Development Tools 210
A.3.2 Profiling & Optimization . 211
A.3.3 Cython: Compilation from Python to Native Code 213

Appendix B: Git and its Usage in Physics Experiments 216
B.1 Git Overview . 216

B.1.1 How does Git work? . 216
B.1.2 Git for Beginners . 217

B.2 Git in Physics Experiment . 220
B.2.1 Requirements for a Physics Experiment 221
B.2.2 Suggested Git Workflow . 222

Appendix C: Nix: Deterministic, Reproducible Software 226
C.1 Overview . 226
C.2 What is Nix? . 228

C.2.1 Cryptographic Hashes & Nix Store 228
C.3 Nix Package Hierarchy . 230
C.4 Using Nix . 231

C.4.1 Example Nix Environment . 231
C.4.2 Full Reproducibility . 236
C.4.3 Other Recommended Nix Tools 239

C.5 Nix usage in EURIQA . 240

Bibliography 242

Index 260

ix

List of Tables

2.1 Comparison of fundamental concepts of Classical Digital Logic vs Quan-
tum Information. 12

2.2 Common Quantum Operators and their different representations. 21

3.1 Key Hardware Components of the EURIQA Breadboard Ion Trap System. 53
3.2 Main transition wavelengths in an 171Yb+ qubit. 65
3.3 Example of Ion Chain Operations. 76

4.1 Comparison of Required Control Hardware for Trapped Ion & Supercon-
ducting Quantum Computers. 106

5.1 Comparison of different waveform generation hardware implementations. 120
5.2 Comparison of selected Xilinx RFSoC Platforms. 122
5.3 Summary of BOM for Custom ZCU111 Enclosure for use with Octet. . . 123
5.4 RFSoC Pulse Parameters. 125

A.1 Comparison of Python Package Managers 208
A.2 Suggested Python Development Tools. 211

B.1 Common Git Command Reference. 220

C.1 Breakdown of Nix environment description sections (from Listing C.1). . 234

x

List of Figures

2.1 Bloch sphere representation of |0⟩ . 19
2.2 Trivial measurement of a qubit. 33
2.3 Quantum circuit diagram of a Bell circuit. 35
2.4 Quantum circuit diagram with parallel operations. 35
2.5 Example Qubit Connectivity Graphs for Nqubits = 4. 43
2.6 Example Landscape of an Optimization Problem. 48

3.1 Diagram of common ion trap types. 55
3.2 Sandia HOA 2 surface electrode ion trap. 56
3.3 Diagram of the atomic energy levels of 171Yb+ ions. 63
3.4 171Yb+ Optical Pumping State Diagram. 71
3.5 171Yb+ Readout State Diagram. 73
3.6 Example of light collection aligning then anti-aligning with ion(s). 79
3.7 Diagram of forces on 4 ions in a chain. 83
3.8 Axes of an ion in a harmonic trap. 93
3.9 Five ions trapped in a quartic potential. 94
3.10 Diagram of a standard experiment cycle using trapped ion qubits. 97
3.11 Sequence of Qubit State Initialization. 99
3.12 Sequence of Qubit State Readout. 101

4.1 Diagram of the various experimental timescales and their corresponding
control realm. 108

4.2 Simulated Frequency Response of EURIQA ≈ 1 kHz Filter. 110
4.3 Example ARTIQ Laboratory network. 113

5.1 Example Triangle Wave Amplitude. 130
5.2 Example of a single-channel square amplitude waveform. 135

6.1 Primary pulsecompiler classes, as a UML class diagram. 147
6.2 Graph of how a data word is transferred to and interpreted by the Octet

RFSoC gateware. 149
6.3 Diagram of the different inputs needed to convert a Qiskit QuantumCircuit

to a ChannelSequence. 156
6.4 Diagram of the order of operations for converting a QuantumCircuit

to run on an RFSoC. 157

7.1 Native N-body operations of a trapped-ion quantum processor. 165
7.2 3-body entangling gates (3-Toffoli) . 169

xi

7.3 Demonstration of Quantum phase-gates on three ions. 171
7.4 Characterization of a three-body interaction gate. 172
7.5 Experimental N-Body gate sequences. 174
7.6 Effective Hamiltonians with three- and four-body interactions. 175
7.7 Raw measurement statistics for the XXX(π

4
) gate. 177

8.1 Ion Physical Qubit Indexing Options . 181
8.2 Example auto-generated ion chain configuration for Nions = 5. 194
8.3 Simulation of the number of swaps to reconfigure a randomly-scrambled

25-ion chain, with 1 : 1 computational to coolant ion ratio. 195
8.4 Simulation of the number of swaps to reconfigure a randomly-scrambled

N-ion chain, with 1 : 1 computational to coolant ion ratio. 196
8.5 Effect of ratio of computational to coolant ions on the number of swaps

needed to sort a scrambled 25-ion chain. 197

A.1 Example of AOM Transmission Saturation as a function of RF Drive Power.214

xii

Listings

6.1 Example of creating and printing a simple Qiskit Schedule. 159
8.1 Pseudocode for assigning sorted ion indices to an arbitrary chain or-

dering. 192
A.1 Hello World program in Python . 206
C.1 Nix ARTIQ Environment example. Filename: shell.nix 231
C.2 ARTIQ 7 shell environment definition using Nix flake format. Filename:

flake.nix . 234
C.3 Example of Patching a Nix package to fix a software bug 238

xiii

List of Abbreviations and Definitions

Abbreviations

2D 2-Dimensional (planar).

3D 3-Dimensional

ADC Analog-to-Digital Converter

AESA Active Electronically-Scanned Array. A class of radar.

AI Artificial Intelligence

AM Amplitude Modulation

AOM Acousto-Optical Modulator

AQC Adiabatic Quantum Computing

ARTIQ Advanced Real-Time Infrastructure for Quantum physics. Control software and
hardware ecosystem optimized for academic quantum physics experiments, Python-
based.

AWG Arbitrary Waveform Generator

BOM Bill of Materials. List of all parts that are included in a system.

C Celsius

CMOS Complementary Metal-Oxide-Semiconductor

COTS Commercial Off-the-Shelf. Referring to a solution that can be commercially pur-
chased without requiring modification.

CPU Central Processing Unit. The main compute unit in a computer/PC.

Cryo Cryogenic. Generally referring to very low-temperature environments, approxi-
mately ≤ 10K in this context.

DAC Digital-to-Analog Converter. Produces analog output voltages.

DC Direct Current. Can also mean low-frequency (compared to RF).

xiv

DDS Direct Digital Synthesis. Method of producing arbitrary-frequency RF output us-
ing a digital device (e.g. FPGA).

DIO Digital Input/Output. Synonym for GPIO.

DMA Direct Memory Access. Method of transferring memory blocks directly from one
device to another without per-block CPU commands.

DRTIO Distributed Real-Time Input/Output. System for remotely commanding Input/Out-
put events across ARTIQ FPGAs.

DSL Domain-Specific Language

EOM Electro-Optical Modulator

F Fahrenheit

FIFO First-In-First-Out. Similar to a queue at an amusement park.

FM Frequency Modulation

FMC FPGA Mezzanine Card. Standardized high-density FPGA breakout connector.

FPGA Field-Programmable Gate Array. Reconfigurable digital logic IC, typically mounted
on a PCB.

GLUT Gate LUT

GPIO General Purpose Input/Output pins. Generally refers to digital I/O pins.

GRPC Go RPC protocol

GUI Graphical User Interface. A user-facing software interface.

HDL Hardware Description Language

HOA High-Optical Access. Typically refers to the HOA 2.1.1 produced by Sandia Na-
tional Laboratories

HPC High-Performance Computing. Sometimes also known as a supercomputer, where
the primary goal is number-crunching and not data storage/retrieval.

HVAC Heating, Ventilation, and Air Conditioning

I/O Input(s)/Output(s)

IC Integrated Circuit

IDE Integrated Development Environment. Generally a text editor with extra features
optimized for software development.

xv

IF Intermediate Frequency. A signal that has been mixed down from its nominal
frequency to be easier to process.

IP Intellectual Property

ISA Instruction Set Architecture. Set of instructions that are natively available on a
computing system, e.g. x86.

LAN Local Area Network

LogiQ IARPA Program aiming to create & characterize an error-corrected logical qubit.

LUT Look-Up Table. A data structure commonly used in FPGAs where entries are
given an index (address), by which they can be retrieved. Generally very fast
access times but small storage space.

MB Megabytes. The capital B refers to bytes (8 bit), in contrast to Mb. Equivalent to
220 bytes.

Mb Megabits. 220 bits.

ML Machine Learning

MLUT Memory Map LUT. Sometimes called Sequence LUT (SLUT).

MR Merge Request. See also Pull Request.

MS Refers to a Mølmer-Sørensen gate, described in Section 3.7.3, from [1, 2, 3]

mu Machine Units. See entry for Machine Units.

NA Numerical Aperture. A measure of how much angle that a lens will collect light
from. Higher values collect light from a large angle.

NUR Nix User Repository. Collection of unofficial, user-submitted Nix packages.

PC Personal Computer

PCB Printed Circuit Board

PID Proportional-Integral-Derivative. A standard type of locking mechanism [4].

PLUT Pulse LUT

PM Phase Modulation

PMT Photo-Multiplier Tube. Used for collecting weak light signals, e.g. collecting
single photons.

PR Pull Request

PWB Printed Wiring Board. Synonym for PCB.

xvi

QUBO Quadratic Unconstrained Binary Optimization.

QUBO Quadratic Unconstrained Binary Optimization

RC Resistor-Capacitor. A common low-pass filter design.

RF Radio Frequency. Typically ≥ 1MHz

RFSoC RF System-on-a-Chip (SOC). FPGA System that combines radio-frequency ADC
& DAC I/Os with FPGA reconfigurable logic & an embedded Arm CPU.

RISC Reduced Instruction Set Computer [5, 6].

RPC Remote Procedure Call. Command from one device to another to execute some
function.

Sa Sample. For an AWG, the output at one unit of time.

SBC Sideband Cooling. Cooling scheme to reduce temperature beyond the Doppler
limit.

SI Système Internationale. Refers to International System of Units, roughly the met-
ric system.

SNR Signal-to-Noise Ratio. Measure of how differentiated a desired measurement sig-
nal is against background noise.

SPAM State Preparation & Measurement. Errors in either preparing the initial qubit
states, or measuring the state of a qubit.

SPI Serial Peripheral Interface. Real-time digital communication protocol.

UML Unified Markup Language

URL Uniform Resource Locator. Generally the address that a website/file can be found
on the Internet.

VM Virtual Machine

WSL Windows Subsystem for Linux. A VM that can be run easily on a Microsoft
Windows machine.

Companies/Organizations

AMD Advanced Micro Devices, Inc.CPU designer and manufacturer, owner of Xilinx.

Arm Semiconductor company specializing in embedded CPU designs & instruction
sets.

xvii

EURIQA Error-corrected Universal Reconfigurable Ion-trap Quantum Archetype. A col-
laboration on the IARPA LogiQ program. Collaboration between the research
groups of Jungsang Kim, Christopher Monroe, and Ken Brown, as well as the
companies AOSense, ColdQuanta, and L3Harris.

IARPA Intelligence Advanced Research Projects Agency. US Government agency.

IBM International Business Machines. Makes superconducting quantum computers.

L3Harris Defense Contracting Company. In this context, they develop AOM Cells.

SNL Sandia National Laboratories. Part of the US Department of Energy (DOE).

Xilinx FPGA Manufacturer. Subsidiary of AMD.

Definitions

Gateware Refers to the digital logic programming encoded on an FPGA. This is equiva-
lent to the code that is written in HDLs such as Verilog or VHDL.

Machine Units Binary integer corresponding to native digital units that an embedded de-
vice uses to approximate a physical quantity. E.g. a digital device cannot represent
an exact arbitrary frequency, but will approximate it to the nearest frequency in its
resolution.

Nix A software program to deterministically build any file/software package. See Ap-
pendix C for more information.

Octet Waveform generation software written by SNL that runs on Xilinx RFSoCs. This
is a combination of “gateware” (HDL) & firmware running on the FPGA’s CPU.

Python A popular programming language. See more information in Appendix A.

Qiskit IBM Qiskit python package. Used for defining and executing quantum circuits &
pulse schedules.

Number sets

i, j Imaginary Numbers

C Class of all complex numbers

Other symbols

exp Exponential. Shorthand for raising the following argument as the exponent for e.
expx ≡ ex.

02 A value in base-2 (binary) consisting of the value zero (0). A subscript of 10
denotes a base-10 (decimal) number.

xviii

PyPi Python Packaging Index. Repository for source code and pre-built Python pack-
ages that can be easily downloaded.

q[0] Denotes the first qubit in a quantum register, sorted by index.

Physics constants/symbols

n̄ Average motional quanta (phonons) in a quantum system.

˙̄n Derivative of the number of motional quanta (phonons) in a system. If positive,
the system is “heating”, so this quantity is often called the “heating rate”.

λ Wavelength, typically of light.

ν Frequency, typically of light.

τ Lifetime in a particular atomic state, measured as the 1
e

decay time. Assumes
exponential decay.

fcarrier The difference in frequency between |F = 0,mF = 0⟩ and |F = 1,mF = 0⟩,
equal to 12.642 812 118 466GHz.

|Ψ⟩ Arbitrary quantum state.

|1⟩ Qubit computational state in the z-basis, analogous to 12. Opposite of |0⟩.

|0⟩ Qubit computational state in the z-basis, analogous to 02. Default value that qubits
are initialized to.

171Yb+ Ytterbium weighing 171 atomic mass units, singly-ionized. This is the primary
ion considered in this work.

Ar Argon

Ba Barium (atomic element)

H Hydrogen

K Kelvin. Unit of temperature measurement, where 0K is absolute zero, the lowest
possible temperature. 0K ≡ −273.15 ◦C

N Nitrogen

Yb Ytterbium (atomic element)

xix

Chapter 1: Introduction

1.1 Classical Computers

Classical computers have driven many of the new capabilities of the 20th and 21st cen-

turies. It is difficult to find a research field that has not greatly benefited or been funda-

mentally changed by the advent of computers, in fields as diverse as mathematics [7] and

agriculture [8].

The original computers were originally optimized for specific tasks such as ballis-

tic targeting or cracking encryption codes [9]. The growth explosion truly began once

computers changed their medium to electronic. Electronic computers have been built

primarily on the back of the transistor, which is at the heart of every modern electronic

device. The most popular transistor was originally the vacuum tube, but these were su-

perseded by the semiconductor transistor, which enabled the rise of the microprocessor

and ubiquitous personal computers [10].

While these innovations have come about due to the efforts of many millions of

people over the past century, they all use the same fundamental computing paradigm,

which we call classical computing. Classical computing is based on the fundamentals of

boolean logic [11]. While boolean logic is quite useful, it is not a native way of describing

our world. The world is analog, not binary. Digital systems are an approximation of the

1

complexities of the world, and that approximation has limitations.

In addition to this approximation, ever-more-complex applications and computa-

tions depend on impressive increases in computational power. Commonly referred to as

Moore’s law, this idea extrapolates that twice as many semiconductor transistors will fit

in the same area every two years [12]. 1 Despite the best efforts of the semiconductor

industry, this exponential growth cannot continue forever. 2

To continue increasing computational power, there are now essentially two paths:

• Continual Incremental Gains: Continue down the path of researching improved ma-

terials, computer architectures, cooling solutions, etc. This will continue to provide

gains, but they will likely be incremental and of diminishing returns.

• Rethink the Computing Paradigm: An alternative is a complete redesign of how we

compute. Some leading candidates include Artificial Intelligence/Machine Learn-

ing (AI/ML) [15], optical computing [16], cryogenic computing [14], and quantum

computing [17, 18].

1An often-overlooked part of Moore’s law is that by doubling the transistors per unit area, the heat
generated per unit area is also increased. There is a thermodynamic limit to how much heat energy can
be removed using common cooling solutions (e.g. fans) [13]. More exotic cooling solutions are possible,
but they are difficult to mass-produce, either due to exotic materials such as cryogenics, or high power
requirements. Approaches such as digital cryogenic computing [14] attempt to significantly lower the power
dissipation of computing, while retaining the same fundamental digital approach of classical computers.

2There are other ways to increase compute speed even if transistor density cannot be increased at the
desired rate. One such field is referred to as computer architecture [5, 6]. Put simply, computer architecture
is the field of contriving better ways to process instructions and data to compute faster or more efficiently.

2

1.2 Quantum Computing

Quantum computing is a field which leverages quantum physics to perform operations

that would not be otherwise possible. Instead of restricting values to either 02 or 123, the

fundamental value in quantum computing, a qubit, can be both |0⟩ & |1⟩, or an arbitrary

superposition of those two (Eq. (2.1)). Quantum computing will be described more fully

in Chapter 2.

Using quantum information instead of digital information should make feasible cer-

tain classes of problems which are intractable on classical computers [17]. However, not

every problem will benefit from running on a quantum computer, and quantum comput-

ers are not yet powerful enough to demonstrate all of their potential. In the meantime,

more scientific and engineering research needs to be performed to enable the potential

groundbreaking capabilities. The goal of this thesis is to provide an overview of the cur-

rent state-of-the-art of one particular implementation of a quantum computer, based on

trapped ion technology, and describe some of the steps that we have made to improve

future trapped ion quantum computer implementations.

Building and operating a trapped ion quantum computer requires a wide variety of

expertise, including the fields of physics, computer science, electrical engineering, com-

puter engineering, and mechanical engineering. Quantum computing pushes the bound-

aries of each of these fields due to its extreme requirements.

This thesis focuses on the electrical and computer engineering implications of trapped

ion quantum computing. A particular emphasis is placed on the control hardware, soft-

3The N2 subscript denotes a binary-encoded number (i.e. base-2).

3

ware, and computer architecture requirements needed to operate a high-fidelity (≥ 99%

2-qubit gate fidelity) trapped ion quantum computer with more than 10 qubits.

1.2.1 Applications of Quantum Computing

Quantum computing’s applications are still being defined. Some examples of these in-

clude simulating quantum physics/systems [19], chemical interactions between atoms/-

molecules [20, 21], and nuclear physics and material simulations, as summarized in [22].

Even if none of these applications prove practical, there is still a benefit to research-

ing applications of quantum computing. Lessons learned from developing quantum algo-

rithms have been fed back into improving classical algorithms [23, 24].

1.2.2 Current State of Quantum Computing

It is important to not mistake the great potential of quantum computing for the current

state of quantum computers. The state of the quantum computing industry is still rela-

tively in its infancy. 4

1.3 Chapter Summaries

1.3.1 Chapter 1: Introduction

This chapter covers an introduction to classical computing and quantum computing. We

also discuss applications where quantum computing shows promise to yield impressive

4The analogy that I like to use is that quantum computers are currently in the same state as classical
computers in the 1960s. They currently occupy massive amounts of space (roughly the size of a room), they
are inefficient, and are only useful for a few highly specialized computations. Only with much engineering
work, and the advent of the semiconductor transistor, were they able to shrink and proliferate.

4

speedups over classical approaches, or to enable solving certain problems that would not

be possible using the traditional approaches.

1.3.2 Chapter 2: Quantum Computing Basics

Next, we introduce many of the fundamental quantum computing terms and concepts

that are needed to understand the concepts in this thesis. This information is presented

to be understandable to those with a typical electrical/computer engineering background,

assuming familiarity with linear algebra. We discuss the fundamentals of quantum infor-

mation, including how a specific instance of a quantum algorithm is specified in a quan-

tum circuit. Then we introduce some of the practical problems that arise when trying to

implement these theoretical concepts on a physical system. Finally, we briefly introduce

alternative paradigms of quantum computing other than the circuit model.

1.3.3 Chapter 3: Ion Trap Quantum Computing

In this chapter we discuss one implementation of a quantum computer, using qubits en-

coded in trapped ions. We cover the physical hardware that comprises a trapped ion

quantum computer and how we elected to encode information in trapped Ytterbium-171

ions (171Yb+). 5 Finally, we discuss how those states are manipulated to execute quantum

operations (gates).

5There are many different ion species other than 171Yb+ that can be used in quantum computing, but we
will primarily focus on this particular ion.

5

1.3.4 Chapter 4: Control System Design

After understanding how an 171Yb+ trapped ion quantum computer is designed at a high

level, it is important to consider how that system is controlled to actually execute the de-

sired quantum operations. There are two primary real-time control systems for a quantum

computer:

• Digital Control: sequences digital input & output operations, and controls the ini-

tialization and readout of the ions.

• Qubit Control: controls the quantum state of a qubit. This is generally performed

using radio frequency signals to manipulate the quantum state (see Chapter 5).

This control system is built primarily on top of ARTIQ [25], and uses an FPGA for in-

put/output logic coupled with a soft CPU core6 to generate real-time control outputs and

read in real-time input signals. We detail the design considerations of a trapped ion con-

trol system, and consider the different devices that must be synchronized to control a

trapped ion quantum computer.

1.3.5 Chapter 5: RFSoC-based Coherent Control System

This chapter describes the waveform generator system based on a Xilinx RFSoC FPGA

that was produced by partners at Sandia National Laboratories, and how it is used to

generate gate waveforms in real time. We present the trade-offs between different options

for waveform generators, and discuss the performance benefits in terms of experiment

6A soft CPU core means that the CPU is embedded in the FPGA logic fabric, and is not a single-function
pre-designed block. Using a soft CPU core generally incurs a power and performance penalty.

6

cycle and data transfer that can be achieved by using arbitrary waveform generator (AWG)

alternatives.

1.3.6 Chapter 6: PulseCompiler Waveform Synthesis & Specification

To put the RFSoC-based waveform generator to use in executing quantum circuits, users

must write a transformation from a quantum circuit to the associated waveforms to ex-

ecute that circuit. This chapter discusses the framework that we developed based on

waveform features of IBM’s Qiskit software[26, 27], and the translation layers to convert

between a Qiskit circuit to a Qiskit schedule and then finally to the programming data that

is sent to an RFSoC for execution.

1.3.7 Chapter 7: Experiments with Ion Trap Control System

Given the infrastructure to program and execute circuits on a quantum computer, the

obvious next step is to use the quantum computer to demonstrate certain theoretical ap-

plications. This chapter discusses several applications that we have explored, how our

technical development work has enabled them, and some of the results that we have col-

lected.

1.3.8 Chapter 8: Advanced Ion Trap Operations

Several advanced operations on a trapped ion quantum computer require tight integra-

tion between different parts of the control stack, which are either entirely novel or rarely

demonstrated in ions. Here we present our efforts to develop several capabilities for

7

trapped ion quantum computers:

• Sorting a chain of ions when there are several species (i.e. isotopes/elements) of

ions present.

• Mid-Circuit Qubit Measurement: selectively reading the state of a subset of all

qubits without nullifying the quantum information on other qubits, and then con-

tinuing with quantum operations. This is a fundamental building block of error-

corrected logical qubits.

• Rapidly Generating Ion-Photon Entanglement using hardware-accelerated entan-

gling loops.

1.3.9 Appendices

While the appendices generally fall into the category of software engineering, the trapped

ion quantum computer that we have developed (EURIQA Breadboard7) is at a relatively

unique scale in academia where software engineering best practices and discipline are

extremely useful, yet too small for an average physicist developer to acquire expertise in

their operation. As such, these appendices are meant to bridge the gap and acquire a basic

familiarity with topics that are somewhat outside a typical physicist’s education.

In the appendices, we discuss the programming language Python [28] (Appendix A),

and some tips on its use in experimental setups such as software development best prac-

tices and tools for optimizing software. We then discuss Git [29] (Appendix B), ver-

sion control software that can be of a great benefit for parallelizing software develop-
7EURIQA is the abbreviation of our collaboration’s name: Error-corrected Universal Reconfigurable

Ion-trap Quantum Archetype.

8

ment for experiments and allowing remote development. Finally, we introduce Nix [30]

(Appendix C), a functional packaging language that is useful for synchronizing software

across multiple laboratory computers.

9

Chapter 2: Quantum Computing Basics

2.1 Quantum Computing Overview

Quantum computing is an exciting field at the intersection of quantum physics, computer

science, and engineering. It is fundamentally different from standard computers in that

the operations that it makes are not based on digital logic [11], but instead use quantum

physics.

2.1.1 Motivation for Quantum Computing

We live in an quantum world. At its base, all the atoms and matter around us interact and

operate based on quantum physics. But when the number of degrees of freedom becomes

large1, that “quantumness” tends to morph into “classical” approximations that generally

work well enough, depending on the problem. However, some problems are inherently

quantum, and cannot be efficiently represented in digital computers. Some examples of

these include simulating quantum physics/systems [19], chemical interactions between

atoms/molecules [20, 21], and nuclear physics and material simulations, as summarized

in [22].

The fundamental problem with trying to simulate problems of this nature is that

1Effectively, “large” means long length scales and large numbers of atoms.

10

the devices used to perform simulations are not themselves quantum. This leads to enor-

mous overhead in the computing resources needed to simulate the quantum state of e.g. a

molecule, and thus it becomes infeasible to simulate on today’s available digital comput-

ers, or the ones expected to become available in the foreseeable future. 2 For example,

in a recent experiment claiming “quantum supremacy” [31], they estimate that simulating

200 s of experiment runtime would take millions of years on current supercomputers. 3

However, the fundamental disconnect between classical and quantum computing

only arises when translating between the two types of computing. If a quantum com-

puter could be created, with enough resources and enough quality to emulate the quantum

physics of the inherently quantum system, e.g. a molecule, then these problems would

not incur the same overhead, and we could efficiently run calculations that were infeasible

before.

2.2 Quantum vs Classical Computing

To understand the differences between classical computing and quantum computing, it

is helpful to contrast some of the names that both use for similar concepts, shown in

Table 2.1. Here, we focus on the model of quantum computation called “gate-based

quantum computing”, as it is currently one of the leading models and has the added benefit

of being most accessible to a general engineering audience. It should be noted that other

2This overhead is due to entanglement. Describing the state of an entangled quantum system scales ex-
ponentially with the number of degrees of freedom, which dictates the number of entangled qubits required.
The overhead causes many computations to generally take extremely long amounts of compute times, as
well as extremely large amounts of memory to store the quantum state while it is being calculated.

3The claim about the amount of supercomputer time to simulate this specific experiment has been dis-
puted in [32], though the concept still applies to general quantum computations.

11

Concept Digital Logic Quantum Logic

Fundamental State Bit (0/1) Qubit (|Ψ⟩)
String of States Register Quantum Register
Operation Gate Quantum Gate

Set of Operations Circuit
Quantum Circuit
or Hamiltonian

Single-State Operation NOT, Identity Single-Qubit Rotation

Multi-State Operation AND, OR
N-Qubit Gate
(e.g. Two-Qubit Gate)

Table 2.1: Comparison of fundamental concepts of Classical Digital Logic vs Quan-
tum Information. More information on all of these can be found in [18]. Note that |Ψ⟩
means a general quantum state.

models exist (see Section 2.7), which tend to be focused on specific domains of problems.

Many of the terms for describing a quantum algorithm obviously borrow heavily

from classical digital logic, such as calling an individual operation a “gate”, and a set of

operations a “circuit.” With these basic definitions and context, we can begin considering

how a quantum computer works, and what it needs to implement the operations described

in Table 2.1.

2.2.1 Criteria for a Quantum Computer

There are several generally accepted criteria required to operate as a functional quantum

computer, which are generally called the DiVincenzo criteria [33]. Throughout this thesis,

we will explain our progress in implementing many of these requirements to demonstrate

a fully-functional quantum computer.

1. A scalable physical system with well characterized qubits: The technology must be

able to eventually support enough qubits to perform meaningful algorithms. How to

achieve this number is outside the scope of this thesis. However, a relevant corollary

12

to this requirement is that the control over the qubits must also be scalable. Our

work towards implementing scalable control will be discussed in Chapter 5.

2. The ability to initialize the state of the qubits to a simple fiducial state, such as

|000 . . .⟩: This is the ability to consistently prepare a high-quality known state,

which represents the starting point for all subsequent calculations. State initializa-

tion will be covered in Section 3.6.2.2.

3. Long relevant decoherence times, much longer than the gate operation time: Must

be able to perform many quantum gates without losing the quantum information to

the environment. 4

4. A “universal” set of quantum gates: Must be able to execute any desired unitary5,

which can be represented (“decomposed”) using a standard set of supported gates

available on a particular quantum computer system. Addressed in Sections 2.4.2,

2.4.3, 3.7.2 and 3.7.3.

5. A qubit-specific measurement capability: Must be able to project an individual

qubit’s quantum state to the measurement basis, without adding noise beyond the

standard “projection noise” of a quantum measurement. Addressed in Section 2.4.4.
4In practice, this number will never be zero, so instead effort is generally directed towards minimizing

the effects of decoherence instead of completely eliminating it.
5A unitary matrix, often called a unitary U , is one in which its conjugate (Hermitian) transpose will

yield 1 when multiplied by U : U†U = 1.

13

2.3 Quantum States

A quantum state represents the quantum-physical state of the quantum computer at any

given point in time. Quantum states thus lie within and obey the rules of quantum physics

and quantum information, and differ in significant ways from digital states.

2.3.1 Digital States

Digital computers typically encode their information (states) into digital logic, which

uses binary states for each “bit” of information. That is, one bit in a digital computer

is either 02 or 12. A set of these bits is called a register (similar to a string of number-

s/characters), which collectively represent a state, or a number. For example, the state

10002 ≡ 810. Note that there are two formats of specifying binary numbers: big-endian

[11], where the most-significant bit is on the right (e.g. 4 in 1234), and little-endian where

the least-significant bit is on the right (e.g. 4 in 1234). In other words stringlittle endian ≡

reverse(string)big endian. 6 For the remainder of this thesis, numbers missing a subscript

are assumed to be in base-10 (decimal), and all registers will be specified in little-endian

format.

2.3.2 Qubit

Quantum computers are governed by the laws of quantum physics, which means that

their fundamental units must also be “quantum” and obey those laws. The equivalent of a

6Standard decimal (base-10) math uses little-endian notation, though most are unfamiliar with the term
“little-endian”. To reflect this expectation, all binary strings here are assumed to be written in little-endian
format unless otherwise specified.

14

digital bit is a “qubit”, or “quantum bit” [18]. A qubit is defined in Eqs. (2.1) to (2.3).

|Ψ⟩ = α |0⟩ + β |1⟩ (2.1)

|α|2 + |β|2 == 1 (2.2)

{α, β} ∈ C (2.3)

While Eq. (2.2) might appear to imply that a qubit is simply in the range [−1, 1], in

reality the quantum state |Ψ⟩ is a superposition, having qualities of both basis states |0⟩ &

|1⟩ while allowing for complex interference between the basis states. This can be noted

by Eq. (2.3), where {α, β} are defined to be complex numbers, i.e. of the form a + b ∗ j

(where j ≡ i ≡
√
−1).

This definition of a qubit is purely mathematical, and obviously idealistic. Further,

it does not define the physical implementation of a qubit, just as digital computers do not

specify whether their logic is performed on vacuum tubes, CMOS, or other semiconductor

processes.

2.3.2.1 Alternative Qubit Representations

Due to this abstract mathematical nature of a qubit, there can be multiple conventions to

represent a qubit. Nominally, any symbol can represent |0⟩ & |1⟩. In a quantum infor-

mation context, where the standard two-state representation is used, |0⟩ & |1⟩ are the de

facto standards. In many physics contexts, specifically for spin-1/2 systems7, these map

7Spin-1/2 systems are systems which require two rotations to return to its original configuration. A
spin-1/2 system is functionally equivalent to a qubit, as it has only two levels.

15

as |0⟩ → |↓⟩ , |1⟩ → |↑⟩ . 8 This convention is to more closely match the fundamental

physics of quantum spin states. There is also a class of quantum states with infinitely

many equally-spaced levels that represent a harmonic oscillator (e.g. mechanical or pho-

ton states in a single mode). These are denoted by |n⟩, where the number of vibrational

quanta (phonons) or photons is represented by the non-negative integer n (n ≥ 0). For

consistency, the rest of this thesis will primarily use the computational states {|0⟩ , |1⟩ }

for quantum information, with a few uses of {|↓⟩ , |↑⟩ } when discussing ion physics. The

numbered states |n⟩ are very important to trapped ion quantum computing (described

later in Chapter 3), especially as a “communication bus” of sorts for inter-qubit opera-

tions (the concept will be discussed in Section 2.4.3, and then applied to trapped ions in

Section 3.7.3). 9

There are two key alternative qubit representations that are important to follow the

rest of this thesis: matrix representation, and the Bloch sphere representation [18].

The matrix representation of a qubit is straightforward: the complex amplitudes

{α, β} are mapped to elements of a column vector. The general single-qubit state |Ψ⟩ is

defined as
8It is equally valid to reverse these mappings, and map |0⟩ → |↑⟩ . In the general quantum information

context, |0⟩ is more of a label than a fundamental physical quantity.
9Quantum states can fall anywhere in between these two extremes of just two states and infinitely many

states. There is restriction on how many basis states that can be represented on a quantum system, as long
as they are coherent and distinguishable. Other common numbers of basis states include 3 (called a qutrit)
or 10 (called a qudit). For now, the majority of the quantum field is working with two basis states (qubits)
by convention, so that is the primary consideration we will use here. Some reasons for choosing to consider
> 2 states include academic curiosity, or better mapping to physical hardware.

16

|0⟩ =

1
0

 (2.4)

|1⟩ =

0
1

 (2.5)

|Ψ⟩ = α |0⟩ + β |1⟩ =

[
α β

]1
1

 =

α
β

 (2.6)

Another representation of a quantum state is called the Bloch sphere, named after

quantum pioneer Felix Bloch. This representation maps the basis states |0⟩ & |1⟩ to the

south & north pole of a sphere, and then uses the complex amplitudes {α, β} to represent

the position on the surface of the Bloch sphere. 10 The equation for the polar coordinates

θ, ϕ of a quantum state is:

|Ψ⟩ = cos

(
θ

2

)
|0⟩ + eiϕ sin

(
θ

2

)
|1⟩ (2.7)

Viewing a state on the Bloch sphere is useful for gaining intuition about several features

of quantum computing:

• Probabilistic Quantum Readout: discussed in Section 2.4.4. Measurements are

the projection of a quantum state onto a vector, commonly the Z axis. Assuming

10A single quantum state has 4 unknowns: the real and imaginary parts of both α and β in |Ψ⟩ (Eq. (2.1)).
Representing qubits in polar space (Bloch sphere) reduces these unknowns to 2: the angles θ & ϕ. This
simplification is valid because of known constraints about quantum states: insensitivity to global phase
(multiplying |Ψ⟩ by eiφ), and |α|2 + |β|2 = 1.

17

perfect measurement operations and measuring along the Z axis, the probability

of measuring in |1⟩ is proportional to the square of the Z component of the Bloch

vector. The probabilistic nature of this operation is because any vector that is not

exactly |1⟩, such as (θ, ϕ) = (0.999π, 0), will have some small component of the

|0⟩ vector, resulting in a small probability of measuring |0⟩.

• Rotations: changing from one quantum state to another (for a single qubit) can

be viewed as a rotation of the Bloch sphere. This will be discussed later in Sec-

tion 2.4.2.

One primary drawback of the Bloch sphere representation is that the extension to multiple

entangled qubits is not very obvious; multiple qubits which are unentangled and separable

can be represented by separate, individual Bloch spheres.

It is important to remember that all these representations of qubit states are equally

valid, and can be used interchangeably.

2.3.2.2 Common Single-Qubit States

There are several key quantum states that are important to understand. These states are

often called basis states, because any other single-qubit state is composed of a linear

combination of any of these states. In linear algebra notation, the Pauli basis states are

equivalent to the eigenvectors of the Pauli operators [18]. A common task of quantum

computers is preparing a qubit in one of these basis states, as they are commonly used as

the starting value for a qubit in a quantum algorithm. Measurement also relies on these

basis states, as projecting (measuring) an arbitrary state’s alignment to one of these basis

18

Figure 2.1: Bloch sphere representation of |0⟩ . In the Bloch sphere representation, any
point on the surface of the sphere is a valid state. Some conventions will invert the Z
(|0⟩, |1⟩) axis, but this thesis will not use that convention to align more closely with the
(|↓⟩, |↑⟩) physics convention. The only difference between these two conventions is an
inversion of the sphere across the x− y plane.

19

states gives an idea of how similar they are. By preparing the same state many times,

and then projecting onto each of the basis states, you can estimate what the original state

was by collecting statistics. In other words, this state measurement in this manner is

measuring the overlap of a state with each of the Pauli basis states.

2.3.3 Multi-Qubit States

To perform useful operations with a quantum computer, it is necessary to add many qubits.

The exact number of required qubits depends on the problem that you are trying to solve,

but will generally include ≥ 2 qubits, and usually significantly more. Thus, we need to

expand our understanding of quantum information to systems with many qubits.

To leverage the power of quantum computing, there must not only be many qubits

but there must also be a way to entangle the qubits, which will be described in Sec-

tion 2.3.4.4. For every extra qubit that is added to a quantum state, it increases the size

of the state matrix dimensions by a factor of 2. 11 Adding a single extra qubit to the

quantum state increases the size of the unitary matrix by a factor of 2 for each dimension.

Intuitively, each qubit can be thought of as exponentially expanding the variables that can

be used to solve problems. 12 By adding more qubits to the computation, more complex

problems can be solved.

11For example, just storing the state of 2 qubits (the statevector) requires a 1 × 4 matrix. Performing an
operation on that system requires a unitary with dimensions 4×4. Adding a single extra qubit to the system
requires a 1× 8 matrix for the statvector, and a 8× 8 matrix for any unitary operation.

12Explicitly, adding an extraN -th qubit increases the number of variables that can be solved for by 2N−1.

20

State Name Rotation Matrix Eigenvector(s) Bloch Sphere Form

Identity σ0 = I =

[
1 0
0 1

]
N/A

Pauli ±X σ1 = σx =

[
0 1
1 0

]
1√
2

[
1
±1

]

Pauli ±Y σ2 = σy =

[
0 −i
i 0

]
1√
2

[
±i
1

]

Pauli ±Z σ3 = σz =

[
1 0
0 −1

] [
1
0

]
,

[
0
1

]
Table 2.2: Common Quantum Operators and their different representations. These
rotation matrices are more precisely called unitary matrices. Any qubit operation can be
denoted by an equivalent unitary matrix. Note that the eigenvectors of the Pauli Z (σ3)[
1
0

]
,

[
0
1

]
are the qubit basis states |0⟩ & |1⟩, respectively. We call this the “Z-basis”, or

the computational basis. If direct measurement in only the Z-basis is possible, the other
bases can still be measured by rotating from e.g. the Y-basis to the Z-basis using only
single-qubit rotations. For each specified state, the Bloch sphere image shown denotes
the positive direction (e.g. the +Z basis); the negative direction is along the same axis,
opposite the origin point.

21

2.3.3.1 Quantum Registers

A quantum register is a set of individual quantum systems, which are combined to form a

larger quantum state. The classical equivalent of this is a digital register, also called a bit

string, such as 1001012. By continuing this analogy to digital computers, each bit in the

bit string is composed of one wire/register or (approximately) a few transistors, but their

collective whole allows them to represent more information, such as the decimal number

3710 via the binary bit string 1001012. It is simply impossible to represent 3710 using a

single binary digit {0, 1}.

In digital computers, there is a distinction between a bus and a register. A bus has

no storage, and can be considered as a set of wires. On the other hand, a register will store

the last value set into it, and continuously output that value until it is updated (typically

via a clock signal) to the newest value.

The terminology for quantum computers is not as concretely defined, because the

line between a bus and a register is blurred due to the no-cloning theorem (see Sec-

tion 2.3.4.3). In a quantum computer, a qubit can be considered memory (a register)

because it stores a value, and will continually keep that value until it is intentionally

modified. Unintentional modifications including dephasing, state decay, or imperfect op-

erations such as over/under-rotation will break this model of a qubit keeping its value.

Nevertheless, a qubit still meets a qualitative definition of a memory in the ideal, error-

free case It does not meet the definition of a wire because accessing or moving the data

requires an active operation to move it between two different “locations.” A quantum

memory does not fit neatly into the classical computing load-store architecture model,

22

because quantum computations are executed “in-memory” via control signals manipulat-

ing qubits.

2.3.4 Key Quantum Physics Principles

To this point, the full capabilities of a quantum computer over a digital computer have

not been fully discussed. There are several key properties of quantum physics that must

be understood to comprehend how a quantum computer can perform calculations more

efficiently than a digital computer. These properties are: superposition, measurement,

entanglement, and the “No-Cloning Theorem”.

2.3.4.1 Superposition

The first property of quantum physics that quantum computers leverage is superposition

[18]. Superposition is the concept that a quantum object can exist in multiple states at the

same time. In a quantum computing context, this means that the current state of a qubit is

in both |0⟩ & |1⟩. Visually, an equal superposition between |0⟩ and |1⟩ is any state on the

equator of the Bloch sphere, e.g. aligned with the X or Y axis. One example of an equal

superposition is the state |Ψ⟩ = 1√
2
|0⟩ + 1√

2
|1⟩ . 13

This property has entered the popular imagination through the thought experiment

of Schrödinger’s cat [34]. In this thought experiment, a cat is placed in a box with a vial

of cyanide, and a triggered hammer that will break the bottle of cyanide. The hammer

13It is possible to have unequal superpositions, where the state is not halfway between |0⟩ & |1⟩. For ex-
ample, |Ψ⟩ = 1

3 |0⟩ +
2
√
2

3 |1⟩ is a valid superposition (according to the definition of a qubit from Eqs. (2.1)
to (2.3)), which is weighted closer to |1⟩ than |0⟩ and is thus more likely to be measured (projected) onto
|1⟩.

23

is triggered by a known quantum system, such as the decay of a radioactive atom with a

known half-life duration. After waiting for one half-life, the atom is in a superposition

between decayed and not decayed, and thus the cat is also in a superposition between dead

and alive. But when the box is opened, we can determine which of the two outcomes has

occurred: the cat is either dead or alive. The tale of Schrödinger’s cat is also informative

because it introduces the concept of measurement in quantum mechanics, which will be

discussed in the next section.

2.3.4.2 Measurement

Measuring a quantum state is inherently different than measuring a classical, digital state.

On a digital computer, you can check the value of a bit at any point, e.g. represented by

a voltage, and if the value is 02 then you can assume that it has always been 02 since it

was last updated. 14 This assumption for digital computers does break down when the act

of measuring a register sufficiently that voltage (e.g. DRAM), but the general concept of

measurements not corrupting the initial value still holds.

In the realm of Quantum Mechanics, the act of measurement can alter or “collapse”

the underlying state. Intuitively, the act of measurement can be thought of as causing the

state to lose its superposition, thus “choosing” which state that it will hold. The closer that

the arbitrary quantum state |Ψ⟩ is to |0⟩, the more likely that it will choose |0⟩ instead of

|1⟩, and vice versa. The probability of measuring |1⟩ is |β|2 in the qubit representation of

Eq. (2.1). This can be seen on the Bloch sphere: a state perfectly situated on the equator

(e.g. +X) is equidistant from |0⟩ and |1⟩, so it is equally likely to be measured in either

14Ignoring noise that could flip the bit, which is rare.

24

state.

2.3.4.3 No-Cloning Theorem

In quantum mechanics (and quantum information), the no-cloning theorem shows that it

is impossible to perfectly clone (copy) an arbitrary quantum state [35].

To prove that cloning is impossible: suppose that there exists a unitary cloning

operator Uclone that can clone an arbitrary quantum state (|Ψ⟩, Eq. (2.1)). This Uclone

should operate to transform a single |Ψ⟩ to |Ψ⟩|Ψ⟩, e.g. Uclone |Ψ⟩ |0⟩ → |Ψ⟩ |Ψ⟩ .

Further, suppose that we have two arbitrary quantum states that we would like to clone:

|ϕ⟩ , |ψ⟩. If we apply the supposed cloning unitary Uclone to each of these states, we will

yield:

|ϕ⟩ ⊗ |0⟩ → |ϕ⟩ ⊗ |ϕ⟩ (2.8)

|ψ⟩ ⊗ |0⟩ → |ψ⟩ ⊗ |ψ⟩ (2.9)

If we consider the inner-product15 of the arbitrary states, using the known inner-product

⟨0|0⟩ = 1, then

⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩ ⟨0|0⟩ = ⟨ϕ| ⟨0| |ψ⟩ |0⟩ (2.10)

Then applying the cloning operator Uclone, which is unitary and thus norm-preserving &

15The inner-product is a generalized form of the dot-product. Note that we drop the ⊗ notation because
it is redundant and hinders readability.

25

will not change the inner-product, we obtain the inner-product:16

(
⟨ϕ| ⟨0|U †

clone

)
(Uclone |ψ⟩ |0⟩) = ⟨ϕ| ⟨ϕ| |ψ⟩ |ψ⟩ = | ⟨ϕ|ψ⟩ |2 (2.11)

⟨ϕ|ψ⟩ = ⟨ϕ|ψ⟩2 (2.12)

The result of this proof, shown in Eq. (2.12), is only satisfied for arbitrary states |ψ⟩ , |ϕ⟩

which produce an inner-product magnitude | ⟨ϕ|ψ⟩ | of 0, 1. Thus, cloning is not possible

for arbitrary states, and is only possible for states that are either identical, anti-aligned,

or orthogonal to begin with. Therefore Uclone cannot exist for cloning arbitrary states, i.e.

ones that do not satisfy Eq. (2.12). Note that because it is possible to clone such special,

non-arbitrary states, it is possible to devise a system to e.g. clone qubits that are only in

|0⟩ or |1⟩.

The no-cloning theorem does not solely apply to qubit states: it is also not possible

to clone an arbitrary mixed state [36]. However it is possible to closely clone some input

states [37], with the condition that the cloning fidelity will depend on the input state.

The result of the no-cloning theorem is that many of the operations that are taken

for granted in a digital computer are made significantly more difficult, or impossible. A

simple example is backing up data on a computer. This operation is trivial on a classical

PC: data is read from a storage drive, written to a second drive, and there now exists two

copies of the same data. On a quantum computer, this operation can never be performed

due to the no-cloning theorem. The best that can be done is approximately replicating

the original datum. Worse, according to [37], even if an approximate copy is made, the

16Note that we apply the Hermitian conjugate of the cloning operator (U†
clone) because it is applying to

the bra states ⟨ψ| ⟨0|.

26

copy is entangled with the original, and then any operation or measurement performed on

the copy can interfere with the state of the original, which is obviously not desired in a

backup situati8on.

While this is a somewhat trivial example, and it could be argued that the need for

backing up quantum information is relatively far off, it nevertheless illustrates a funda-

mental difference between classical and quantum computers. This fundamental difference

will need to be accounted for at all levels of the computer architecture design, and have

a net effect of complicating the design of a quantum computer by requiring high-fidelity

long-term storage for future computations.

2.3.4.4 Entanglement

The principle of quantum entanglement is that there can be a correlation in the joint quan-

tum system formed by multiple qubits. In a perfect world, every qubit begins as com-

pletely disentangled with every other qubit, i.e. independent. When a proper sequence of

operations is applied to at least two qubits, the qubits can become entangled and begin

sharing correlations. Once they are fully entangled, measuring one of the qubits’ values

will allow you to know the value of the other qubit by way of correlation.

For example, consider the following entangled state, which is a superposition be-

tween both qubits being in |0⟩ and both qubits being in |1⟩: |Ψ⟩ = |00⟩+ |11⟩ (discarding

normalization factors). If one of the two qubits was to be measured, and found in |1⟩, then

we would know that the other qubit was also in |1⟩ (and vice versa for |0⟩).

27

2.3.4.5 Reversibility

It is interesting to note that quantum computing is closely aligned with the concept of

reversible logic. Nielsen and Chuang [18, Section 3.2.5] provides a good overview:

First, reversibility stems from keeping track of every bit of information; irre-

versibility occurs only when information is lost or erased. Second, by doing

computation reversibly, we obviate the need for energy expenditure during

computation. All computations can be done, in principle, for zero cost in en-

ergy. Third, reversible computation can be done efficiently, without the pro-

duction of garbage bits whose value depends on the input to the computation.

That is, if there is an irreversible circuit computing a function f , then there

is an efficient simulation of this circuit with action (x, y) → (x, y ⊕ f(x)).

([18], pg. 161)

An important implication of this is:

To harness the full power of quantum computation, any classical subroutines

in a quantum computation must be performed reversibly and without the pro-

duction of garbage bits depending on the classical input. ([18], pg. 161)

In other words, performing any classical operation on a quantum state, such as adding 1

to a number stored in a quantum register, will require the use of reversible logic gates,

such as the Toffoli gate [38]. We will discuss an improved Toffoli gate implementation in

Section 7.2.

28

2.4 Quantum Operations

A quantum computer must be able to perform an operation to be useful. This section will

discuss some of the fundamental operations that must be implemented for full control of

a quantum computer, as laid out by Section 2.2.1.

2.4.1 State Preparation

The first building block of a quantum computer is implementing state preparation. This

is the ability to reliably prepare a known quantum state. One of the most typical states to

prepare is |0⟩, or for multiple qubits |00 . . . 0⟩.

This prepared state then becomes the input state into a quantum circuit, or a set of

ensuing operations. By convention, if an initial state other than |0⟩ is desired, qubits are

first prepared in |0⟩, and then rotations (Section 2.4.2) are applied to achieve a different

desired initial state, e.g. |1⟩. 17

It is important to note that multi-qubit entangled states will sometimes be required,

such as a logical qubit basis state in [39]. In this case, this state can generally be achieved

by preparing in |0⟩, and then applying not just single-qubit operations, but a mix of single-

and multi-qubit operations.

17In this scheme, because a subsequent operation is applied to enter |1⟩ after starting in |0⟩, preparing a
qubit in |1⟩ will have lower fidelity than |0⟩.

29

2.4.2 Single-Qubit Operations

Single-qubit operations are operations that only address, or change the state of, a single

qubit. The most basic of single-qubit operations is applying any of the Pauli rotation

matrices, to rotate a qubit around a given axis (see Table 2.2).

By convention, a gate that applies a continuous version of a Pauli matrix will be

denoted as (letting σ be an arbitrary Pauli matrix) [17]:

Rσ(θ) ≡ exp

(
−iθσ
2

)
(2.13)

A common notation is to abbreviate Rσ(π) as the equivalent Pauli matrix, e.g. RZ(π) =

Z, RX(π) = X , RY (π) = Y .

All single-qubit operations can also be expressed as 2 × 2 matrices (unitaries). A

single-qubit operation can be applied to any given qubit by taking the tensor product (⊗).

18 For example, the single-qubit X gate can be applied to the second qubit (of two qubits)

with:

I ⊗X =

1 0

0 1

⊗

0 1

1 0

 =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


(2.14)

Another common single-qubit gate is the Hadamard gate. The Hadamard gate takes

the computational states |0⟩, |1⟩ into a superposition: H |0⟩ → |0⟩+|1⟩√
2
, H |1⟩ → |0⟩−|1⟩√

2
,

which are commonly abbreviated as |+⟩ and |−⟩, respectively. The Hadamard gate has the

18This tensor product operator is sometimes also called the Kronecker Product.

30

interesting property of being its own inverse (HH−1 = HH = I). It can be decomposed

into Pauli rotations: H = XRY (π/2). It is important to note that any single-qubit gate

can be decomposed into a combination of continuous Pauli rotations.

2.4.3 Multi-Qubit Operations

Multi-qubit operations are operations that are applied to multiple qubits at the same time.

Generally, applying a multiple qubit gate will produce entanglement, though it can also

disentangle qubits. 19 With a combination of single-qubit and two-qubit operations, an

arbitrary multi-qubit gate can be realized [40].

The basic two-qubit gate is the CNOT gate, which stands for Controlled-NOT. This

gate applies a NOT (X) gate to the target qubit if the control qubit is in |1⟩. See an

example CNOT gate in Fig. 2.3; the filled circle is the control qubit, and the qubit with

the circle with the plus (⊕) is the target qubit. The CNOT gate is represented in matrix

form by:

CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


(2.15)

A two-qubit entangling gate such as a CNOT is required for universal quantum

computation [18]. However, multi-qubit gates are not restricted to only operating on two

qubits. Conceptually, if a quantum state will be shared between N qubits, it is more

19An example of a multi-qubit gate that produces no entanglement is the SWAP gate, where the quantum
state of two qubits is swapped between the two.

31

efficient (in time and resources) to generate that entanglement using a N -qubit gate than

using an equivalent sequence of 2-qubit gates (which produces the same unitary matrix).

Other typical quantum gates include:

• Controlled-U gate: applies a unitary U to the target qubit if the control qubit is in

|1⟩.

• Toffoli Gate: the basic 3-qubit version, briefly covered in Section 2.3.4.5, is effec-

tively a CNOT with two controls instead of one (i.e. a Controlled-Controlled-NOT,

or CCNOT), and flips the target qubit if and only if the two control bits are both in

|1⟩.

2.4.4 Quantum State Readout

Measurement is a fundamentally important concept in quantum computing, and was

briefly discussed in Section 2.3.4.2. It deserves special care because quantum measure-

ment is conceptually very different than in classical computing.

Measurement is the act of resolving the quantum state of a qubit, and the corre-

sponding graphic signifying measurement is shown in Fig. 2.2. In contrast to classical

computing, quantum measurement will generally irreversibly change the state of the qubit

by collapsing any superpositions in the measured qubit(s). Measurement is sometimes re-

ferred to as projective, meaning that the precise state |Ψ⟩ is not measured, but only its

projection along a given axis (eigenvector).

It should be noted that measurement is a statistical process. One measurement

along the Z-basis of a qubit will only determine if the qubit was in |0⟩ or |1⟩ for that

32

q

Figure 2.2: Trivial measurement of a qubit. This figure shows the symbol for a mea-
surement operation on a qubit. Measurement symbols that are not shown at the end of a
circuit are typically implied.

particular experiment run. Repeated measurements are necessary to approximate the pre-

measurement quantum state, which then requires balancing the number of repetitions

against approximation accuracy.

There are certain cases where the act of measurement does not completely resolve

the state of the entire system, but instead fully resolves the state of certain qubits in the

system (i.e. Nmeasured < Nqubits), which we here refer to as “partial measurement”. In

certain applications, such as quantum teleportation and quantum error correction, mea-

surements are performed on an ancilla qubit, which has certain information about the

quantum state mapped to it, but not the identity of the quantum state itself. This “partial

measurement” is in contrast to a “weak” or “imperfect” measurement, where the quantum

state is minimally modified, and little information about the quantum state is obtained in

turn.

2.5 Quantum Algorithm Abstractions

Generally, executing an algorithm on a quantum computer requires some form of abstrac-

tion to represent the sequence of operations that are being performed. This abstraction

can be at varying levels depending on the overall goal. Just as computer scientists do not

specify data structures and algorithms in terms of transistor voltages, it can be an inap-

propriate level of abstraction to specify a given quantum algorithm in terms of the RF

33

drive on the given quantum system needed to perform an operation. This tradeoff, as well

as some benefits that come from breaking these abstractions, will be discussed further in

Chapter 3 and Chapter 4.

In the context of this thesis, there are a few levels of abstraction that can describe a

sequence of operations on a quantum computer. In order from higher level of abstraction

(higher abstraction here implies least knowledge of the quantum computing hardware and

the quantum physics Hamiltonian that describes it) to lower level of abstraction: Quan-

tum Algorithm, Quantum Circuit, Unitary, Pulse Schedules and Hamiltonian. We will not

fully treat each of these abstractions, but it is important to understand that each of these

methods are fully valid and equivalent methods for describing the same sequence of oper-

ations. However, the highest levels of abstraction are also the least precise, as they tend to

make simplifying assumptions about the underlying system. The most-precise level is the

lowest level, but this precision includes a higher level of complexity, which is especially

true as the scope of the system that is being considered increases.

For example, if you want the most accurate simulation of a quantum computer, you

will try to incorporate as many physical and environmental parameters into your simu-

lation as possible, but this will add complexity to the simulation. Eventually, as more

and more factors are incorporated, or the size of the quantum system grows enough, the

simulation will become infeasible (for a reasonable amount of computing power). On

the other hand, a highly abstract quantum algorithm specification (such as [41, 42]) will

tend to ignore the implementation details of how a particular operation is implemented,

and just specify what the end result is. This allows the algorithm to be generally system-

independent, to scale to any given system size, as well as be more easily simulated be-

34

q[0]
q[1]

H

Figure 2.3: Quantum circuit diagram of a Bell circuit. A Bell circuit is a simple
circuit that generates a Bell state [18], which are maximally entangled two-qubit states.
The first gate on q[0] is called a Hadamard gate (Section 2.4.2), and effectively puts the
qubit in superposition between |0⟩ & |1⟩. The second gate is a CNOT (Controlled-NOT
or Controlled-X) gate, and entangles the two qubits.

q[0]

q[1]
X

Y

(a) Circuit with implied parallel operations

q[0]

q[1]
X

Y

(b) Circuit with guaranteed sequential
operations

Figure 2.4: Quantum circuit diagram with parallel operations. Fig. 2.4a demonstrates
parallel single-qubit operations on two qubits. The quantum circuit does not necessarily
guarantee that these operations will happen simultaneously, it just allows that possibility.
In other words, it would be equally valid to perform the X gate followed by the Y gate,
or the Y gate followed by the X gate, or both simultaneously. Alternately, sequential
operations can be enforced using devices such as a “barrier”, shown in Fig. 2.4b,

cause it has removed complexity.

2.5.1 Quantum Circuit Model

The quantum circuit model lies between the two ends of the spectrum of quantum abstrac-

tions: partially between high-level quantum algorithms (a computer science approach),

and a low-level Hamiltonian specification (a quantum physics approach).

The concept of a quantum circuit is most analogous to a digital circuit diagram.

For reference, an example quantum circuit diagram is shown in Fig. 2.3. Because these

circuits will be used in several places throughout this thesis, we shall provide a brief

overview of their operation and usage.

A quantum circuit is composed of qubits, operations, and wires. Viewing it as a se-

35

quence of inputs & outputs, a quantum circuit will generally begin with a qubit (typically

with a label), which is prepared into a given state (typically |0⟩, for reasons discussed in

Section 2.4.1 and Section 3.6.2.2). Every qubit has a wire connected to it. A wire is a

virtual operation, which conceptually connects the output of one circuit element to the

next circuit element. Wires apply the Identity operation to a qubit, i.e. effectively no

operation (“no-op”). 20 A wire then typically connects two operations. We will primarily

consider two types of operations: gates, and measurement, which retain their meaning as

previously discussed in Section 2.4.

This representation clearly shows the operations that will be executed on a quantum

system. The quantum circuit is also useful for intuitively understanding the complexity of

a given quantum algorithm: more qubits will require an exponentially larger state space,

which is more difficult to simulate using classical computers, and physically requires

control of many qubits. Further, adding more gates will add approximately linearly to the

execution time of the circuit, whether in simulation or physical execution. Larger circuits,

in terms of either number of qubits or number of gates, are thus more difficult to simulate

classically and show the value of a physical quantum computer.

There are several additional features that add complexity to the basic quantum cir-

cuit, which are necessary for more advanced quantum applications:

• Digital Bits: These can represent either an arbitrary input classical register, or store

the result of a measurement (and potentially use it later on in the quantum circuit).

These are represented by two lines for a wire, instead of a single line for a quantum

20Some compilers will insert “echo” operations during wires/identity operations, to make the qubits
more-insensitive to certain classes of noise sources.

36

wire.

• Mid-Circuit Measurement: This is the act of performing a measurement in the mid-

dle of a quantum circuit. In other words, it is performing a measurement while there

are still subsequent operations on a qubit that will be executed after the measure-

ment.

• Conditional Operations: These operations enable executing any other operation

based on either a classical or quantum state, while maintaining the quantum state.

The condition21 is based on a set of digital bits, which can be sourced from a clas-

sical digital source (such as a random number generator), or as a direct result of

a mid-circuit measurement. Together with mid-circuit measurement, these oper-

ations are necessary for critical quantum computing algorithms such as quantum

error correction, or for studying quantum information concepts such as interactive

protocols [43].

• Mid-Circuit Reset: This resets a qubit into a known state, effectively re-applying a

preparation operation in the middle of a circuit. This can either be destructive (i.e.

erasing the quantum state), or reversible by undoing any operations applied to the

qubit.

• Barriers: These enforce serial operations, by defining certain points across which

operations cannot be moved. Barriers exist because quantum circuits do not spec-

ify an order of operations, as they assume that all operations can happen simulta-

neously, as in an electrical circuit. This assumption does not always hold true in
21i.e. Whether or not the operation should be executed

37

practical quantum computers, typically due to either physics or control limitations.

2.5.1.1 Shortcomings of Quantum Circuits

Though quantum circuits may appear superficially similar to circuit diagrams, there are

several important caveats to consider with their usage, which are rarely discussed.

• Legibility at scale: It is difficult to comprehend a large-scale quantum circuit, e.g.

one comprising hundreds of operations on dozens of qubits. This is not a unique

problem to quantum circuits: a digital scale with a similar number of operations

is just as difficult to visualize and comprehend. In this case, I suggest that the

quantum community borrow from the experience of electrical engineering, which is

accustomed to similarly large-scale systems. Electrical engineering has developed

hierarchical schematics, where an overall circuit schematic is broken down into

sub-blocks, each of which are logically grouped and somewhat independent. For

example, a logical qubit circuit could have one block for entangling qubits, another

for operating on the qubits, and then another for ancilla measurement & correction.

Each of these blocks would have a circuit illustrating it, and then a high-level block

diagram showing the ordering of the logical blocks.

• Error Diagnosis: Related to the previous point, there is no simple way to easily

identify a simple transcription error when defining a circuit. For example, consider

a human copying a textbook circuit, who mistakenly swaps an X gate for a Y gate

on a single qubit, but has the remaining qubits correct. Other than painstakingly

manually double-checking the circuit, or debugging it, there currently exists no sort

38

of automated tool for checking that the circuit matches expectations.

• Parallelism: As previously described, quantum circuits assume that every operation

can be parallelized (executed simultaneously). This assumption does not always

hold. This conceptual mismatch is due to the difference in nature between electrical

circuits and a quantum circuit: an electrical (logic) gate such as AND is effectively a

passive device, in that once properly designed and set up it will continue to perform

its operation with no external control. The same is not true of quantum computers,

which tend to require a drive signal to perform an operation (discussed later in

Section 3.7).

• Entanglement Visualization: As previously discussed, quantum entanglement is

generally a desired quality in a circuit, but it is also reversible (akin to how entan-

glement is generated in a circuit). Certain classes of circuits will entangle qubits,

perform some operation, and then disentangle the qubits. However, in a long quan-

tum circuit, the entangling operation might occur at the beginning of the circuit,

but the entangled qubits might not be used until the end. This problem is unique

to quantum circuits, as opposed to a digital circuit where correlations only last for

the duration of a gate, primarily due to the no-cloning theorem (Section 2.3.4.3),

so to track the entire state of the qubit, you must track the history of all operations

on that qubit back to the initial state. Currently, to track the state of entanglement

between multiple qubits, you must be able to perform linear algebra calculations in

your head (or use some level of intuition), but entirely without any guide markings

in the quantum circuit as to the creator’s intentions.

39

• In-Circuit Commentary: Currently there is no method for annotating a quantum

circuit without accompanying external text. By analogy to a musical score, a com-

poser annotates information such as volume outside of the sequence of notes them-

selves. However, none of this is available in standard quantum circuits. They do

offer the concept of a barrier, which can logically divide parts of a circuit in time,

but it is difficult to ascertain the intention behind the circuit without access to ei-

ther accompanying text or the software that generated the quantum circuit (which

is presumably annotated/well-named). Again by analogy, the equivalent would be

an electrical circuit schematic that did not allow including any text comments or

references to outside information.

2.6 Breaking Abstractions: Hardware Details

So far, this chapter has addressed the topic of quantum information very generally, with

very little discussion of physical quantum hardware. We will continue to leave the ma-

jority of that discussion for later chapters, but there are a few high-level considerations

that are relevant in a purely quantum information context. These are slight permutations

to the concepts already introduced: circuits and gates.

2.6.1 Qubit labels: Physical vs Virtual

In a typical quantum circuit abstraction, every qubit is treated identically. This is a reason-

able abstraction; but to actually execute the circuit, the information associated with every

qubit in the circuit must be mapped to some physical entity. A useful way of thinking

40

about this mapping is in terms of physical and virtual qubits.

A virtual qubit is simply a label when designing a quantum circuit. At the most

basic level, it is simply an index that denotes which qubit that you are performing oper-

ations on. The assumption that most quantum circuit designers work with is that every

qubit in their circuit operates identically. In this case, “identical” means that they per-

form similarly in terms of quality (usually denoted by fidelity in quantum systems), and

connectivity (discussed in the next section, Section 2.6.2).

By contrast, a physical qubit corresponds to a physical qubit implementation, two

of which will be discussed in Section 4.3. The number of physical qubits in a system is

typically a design parameter when the quantum computer is designed, so it is relatively

constant (this is not quite true of trapped ion systems, as will be discussed in Chapter 3).

Suppose that you have five physical qubits in a system. Each of those qubits inhabits

some physical space that is inherently, even if minutely, different from the other qubits.

Because qubits, despite our best efforts, are coupled to (interact with) their environment,

this means that each qubit is effectively unique. If we were operating in a digital realm,

this inconvenient fact could be somewhat abstracted away with thresholding, but every

minute change matters in today’s quantum computer. 22

Thus, we have two different conventions for considering a qubit: virtual, which

22For an example of digital thresholding, consider a transistor that switches at ≥ 2.7V, but accepts input
voltages in the range 2.7V to 3.3V. Any voltage in the range 2.7V to 3.3V will be treated as 12, while
any voltage in the range 0.0V to 0.6V will be treated as 02, and behavior in between is undefined.

It is interesting to consider that thresholding will likely apply to quantum computers as they reach the
scale of logical qubit error correction. Error correcting codes have a fidelity threshold, below which they
do not improve on the underlying qubits’ native fidelity. If the logical qubit operations are of sufficient
quality, i.e. above the threshold, then error-corrected qubits will have similar effects to digital. The precise
threshold is very dependent on system and error correcting code specifics, and will not be discussed further
here.

41

treats every qubit identically, and physical which must consider the complexities of a

device in the real world. For productivity on the side of both the circuit designer and

the system designer, it is necessary to have these two abstractions. By analogy, most

traditional software programmers do not typically concern themselves with exactly what

model of CPU that their software will run on, or which transistors a particular block of

code operates on. Those details can be handled by either the CPU itself or the compiler.

Requiring every programmer to understand them would simply be inefficient. Thus, a

method of mapping between the abstract and concrete representations is required.

This process for quantum computers is typically called qubit mapping, or qubit

layout. Qubit mapping is the process of converting between a virtual qubit representation

of a circuit to a physical qubit representation.

To explain this process, consider the example quantum circuit in Fig. 2.3. This

circuit is specified for 2 qubits, but it could be run on a quantum computer with ≥ 2

qubits. Suppose that the physical qubits have indices {0, 1, ..., N}. The simplest mapping

would simply be to assign the two qubits in order to the first two indices: so q0 → 0,

q1 → 1. While that mapping might be technically correct, it fails to take into account

any information about the physical qubits. For example, suppose that two-qubit gates

were not possible between qubits 0 and 1, or that the two-qubit gate between them was of

comparatively low quality. Both of these scenarios would make a different qubit mapping

optimal. It should be clear that it is an optimization problem to assign the virtual to

physical mapping in the most efficient manner.

42

1

2

3

4

(a) Complete
graph. Also called
fully-connected.

1

2

3

4

(b) Cycle graph.

1

2

3

4

(c) Linear graph.

1

2

3

4

(d) Disconnected
graph.

Figure 2.5: Example Qubit Connectivity Graphs for Nqubits = 4. There are a limited
amount of graphs that can be demonstrated with only 4 nodes, but this illustrates a few of
the major classes.
Fig. 2.5a is the closest to the connectivity of an ion trap quantum computer. Qubits with
a physical 2D (planar) qubit layout have difficulty replicating this connectivity because
of the crossing wires, e.g. overlapping edges between (2, 4) & (1, 3). Difficulty can also
arise if control signals need to be routed to the inner connections ((2, 4) & (1, 3)), as in
superconducting qubits, because a common way of performing multi-qubit gates is using
a tunable coupler which must be enabled to perform a gate [44].23

Fig. 2.5b will easily map to a planar geometry, but at the cost of not being able to perform
gates between distant nodes, which forces information to be moved around for interac-
tions to occur.
Fig. 2.5c is very simple to implement, but may have very limited practical capability due
to the limited connectivity.24

Fig. 2.5d is almost entirely useless for quantum circuits because it does not support multi-
qubit gates, but might still be useful for test and characterization purposes, assuming that
single-qubit operations can still be performed.
Many other connectivity graphs are considered in quantum computing, including Chimera
[45], Heavy-Hexagon [46, 47], as well as hypercubes and cyclic butterfly layouts [48].

2.6.2 Qubit Connectivity

In the previous section, we considered that every physical qubit is not identical. One of

the common ways that physical qubits are not identical is in their connectivity.

Every quantum computer has a connectivity graph. In the connectivity graph, the

nodes/vertices are the qubits, and an edge is drawn between any qubits that can perform

24For this particular number of nodes, this graph could still be mapped to a planar architecture by routing
one of the edges around the outside, but that becomes either more difficult or more complex at higher
numbers of qubits.

24Practically, this type of architecture tends to require many SWAP gates to move information to the
appropriate location to perform a gate on it.

43

a direct two-qubit gate (e.g. a CNOT gate) between the two qubits. Single-qubit gate

connectivity25 is typically not drawn, because it is assumed that a single-qubit gate can be

performed on any qubit. 26 Thus, the connectivity of a quantum computer is effectively

the set of two-qubit gates that can be performed. Some example connectivity graphs for

small numbers of qubits are demonstrated in Fig. 2.5.

Another layer of complexity is the quality of the quantum gate. Quantum comput-

ers today are operating at the limits of their performance, and as such any tiny variation

(in manufacturing, control signals, environment, etc.) can cause performance fluctua-

tions. Thus, the fidelity (quality) of a gate between e.g. Qubits (0, 1) might be better

than between Qubits (1, 2) at the moment, but that might change in a few hours. So

optimal performance when executing a circuit relies on assigning qubits with knowl-

edge of connectivity, as well as weighting connectivity by the quality of the gates. This

is an active area of research, and there are many approaches to solving this problem

[49, 50, 51, 52, 53, 54, 55, 56].

2.6.3 Native Gate Set

For ease of communication, many quantum algorithms are designed assuming a stan-

dard library of quantum operations, such as the Clifford group (consisting of CNOT,

Hadamard, Pauli matrices, and the S (Phase) gate) [57] plus the T (π
8
) gate. Using the

Solovay-Kitaev Theorem [58, 59], this set of “universal” operations can be used to con-

struct any arbitrary quantum state efficiently.

25i.e. a looping edge from a node to the same node
26This assumption does not always hold true when some qubits become unaddressable for various rea-

sons, such as the unusable superconducting qubits in Google’s Sycamore processor [31, Fig. 2].

44

However, no currently functioning quantum computer natively implements all of

these operations, due to details in the Hamiltonian that each quantum computer imple-

ments. Instead, each quantum computing technology implements some other set of gates,

which we call “native” to that technology family. A properly-chosen set of native gates

will be universal, and thus able to implement every possible quantum operation.

The disconnect between native operation implementation and high-level abstrac-

tions of those operations is actually not unique to quantum computers. Modern digital

computers are typically implemented using CMOS transistors, whose native gate is a

NAND (AND → NOT) operation. Fortunately, the NAND gate is a universal gate, and

so any logic circuit that is specified using e.g. AND or OR gates can be mapped to native

NAND circuitry.

This similarity between native quantum and digital gates even carries over to the

need for post-mapping optimization once a standard set of operations is mapped to the

native gate set. The issue is that once the mapping to the native gate set is complete, there

will typically be redundant native gate operations that either perform no operation, or are

cancelled by some other operation.

2.7 Alternative Quantum Computing Paradigms

This chapter has primarily treated quantum information in terms of gate-model quantum

computing. Gate-model quantum computing is just one of several quantum computing

models. Some other models include Quantum Simulation [22, 60], and Adiabatic Quan-

tum Computing (AQC) [61, 62, 63, 64]. Both of these are rich fields that will not be fully

45

treated here, though a general overview of each model is useful for the sake of compar-

ison. Before covering each sub-field individually, it is important to note that theorists

have determined that each quantum model (gate-model, quantum simulation, and adia-

batic quantum simulation) are equivalent, in that theoretically they can all produce the

same results [62]. However, just as processors vary by application27, each computational

model has its own tradeoffs. A specific quantum computing system will be normally

optimized for one application (model) or another.

2.7.1 Quantum Simulation vs Gate-Model

The goal of quantum simulation is to model the behavior of some physical phenomenon

using the quantum behavior of a quantum computer. Quantum simulation aims to broadly

simulate the dynamics of a system. This should allow simulating either dynamics or sys-

tems that cannot currently be directly observed, such as high-temperature superconduc-

tors [22]. This model differs from gate-model quantum computing because it generally is

not aiming to precisely reproduce every Hamiltonian or Unitary, only a particular Hamil-

tonian, and generally can accept some level of error. Gate model quantum computing

typically expects that every operation is as precise as possible, and any errors can be

catastrophic to the result of the current circuit execution. The reliance on precision makes

gate-model quantum computing extremely difficult. By analogy to electrical engineering,

imagine if every transistor in a computer would only work as expected if it received a

precise voltage signal (i.e. if it was operated in the linear regime instead of at saturation).

27For example, the processor which controls a microwave is not the same processor that controls a per-
sonal computer.

46

In this scenario, if the voltage was off by even 0.1% (due to cosmic rays [65, 66], poor

voltage regulation, external temperature drifts, etc.), the transistor would give an incon-

sistent result. A system with this fatal flaw would obviously have difficulty scaling to

include the billions of transistors that today’s modern CPUs have.

Quantum simulators are making progress in simulating interesting physics. More

information on quantum simulation can be found in [67, 22, 68, 69, 70, 60, 71, 72, 73, 74,

75, 76, 77].

2.7.2 Adiabatic Quantum Computing vs Gate-Model

Adiabatic Quantum Computing (AQC) is yet another model of quantum computing, which

is primarily considered for solving optimization problems [78, 79]. An optimization prob-

lem is a class of problem where some target function is maximized (or alternately, mini-

mized), with optional constraints on the input values. For example, consider an example

function shown in Fig. 2.6. The goal of an optimizer is to find the best solution, typically

by finding the minimum of a cost function. In other words, the best solution to an opti-

mization problem is the solution with minimal cost. If the cost is plotted as a function of

the input variables, the result is a plot somewhat like Fig. 2.6, but potentially with more

dimensions.

However, it is very computationally expensive to solve optimization problems [78],

and there can be many local minima that hinder finding the globally optimal solution.

For example, consider trivial optimization solver that starts at x = 0.0, and continues

searching along the line as long as the slope is negative. For the example of Fig. 2.6, this

47

0.0 0.2 0.4 0.6 0.8 1.0
Input Variable (arb.)

0.0

0.2

0.4

0.6

0.8

1.0

Ou
tp

ut
 V

ar
ia

bl
e

(a
rb

.)

Example Landscape of an Optimization Problem

Figure 2.6: Example Landscape of an Optimization Problem. In this simple example,
there is only one independent variable (variable that can be changed), and there are many
local minima. The global minimum is x ≈ 0.6.

would stop around x = 0.1, and never find the globally optimal solution around x = 0.6,

let alone a near-optimal solution around x = 0.4.

The concept behind AQC as applied to optimization problems is that it can take

advantage of quantum effects to “tunnel” through large barriers in the cost function (such

as the one around x = 0.5 in Fig. 2.6) to find the optimal solution. Conceptually, AQC

achieves this by initializing a quantum bit in the ground state of that system (e.g. |0000⟩).

Then, it slowly (adiabatically) applies a Hamiltonian corresponding to the problem that

you would like to solve. If the transition is applied slowly enough, then the quantum

register should remain in the ground state of the currently-applied Hamiltonian for the

entire duration. Thus, the ground state at the end of the transition should be the ground

state of the problem Hamiltonian, and the optimal solution has been found.

While this approach might be useful for certain types of problems, it has a few main

48

drawbacks:

1. Classical Competition: For a quantum optimizer using adiabatic computing to be

useful, it must compete against the best algorithms and processors that can be de-

signed for classical computation. Classical optimizers are currently improving by

using techniques learned from quantum algorithms [80, 81, 82, 83].

2. Near-Optimal Classical Solutions: Further, classical optimizers are generally very

good at getting close to the optimal solution, if not the exactly correct solution.

Thus a quantum optimizer can only win if its solution is better (which has relatively

small margins against classical optimizers), or if its solution is faster to compute.

3. Problem size: Generally, state-of-the-art quantum computing systems are very small

today. Thus, the problems that they can solve are also small. This restricts a quan-

tum optimizer to only solving small-scale problems (for the near-term), which are

more difficult to out-compete against classical optimizer algorithms. However, this

problem is not unique to AQC, as current gate-based quantum computers encounter

a similar problem.

4. Language/Education: Most people who are attempting to solve optimization prob-

lems do not have a background in quantum mechanics, or even know how to begin

describing their optimization problem for an Adiabatic Quantum Computer.

5. Problem Mapping: Even after identifying a suitable problem for optimization using

quantum annealing, the problem still needs to be mapped to a QUBO (Quadratic

Unconstrained Binary Optimization), and then to the available hardware [84]. 28

28This process of mapping to hardware, called embedding, is an optimization problem in itself.

49

Chapter 3: Ion Trap Quantum Computing

3.1 What is a Trapped Ion Quantum Computer?

A trapped ion quantum computer is one leading technology that implements the concept

of a qubit as a physical quantum device. In a trapped ion quantum computer, each qubit is

represented by the energy levels of a single charged atom (i.e. ion). One or more ions are

then trapped via an RF potential in an RF Paul trap [85]. The energy levels of the atoms

are manipulated using atomic physics principles to perform the various operations neces-

sary for a quantum computer, ranging from initializing in the ground state to performing

coherent quantum operations.

The above is generically true of most trapped ion quantum computers. The follow-

ing sections will delve into the specifics of our experimental setup.

3.2 Ytterbium Ions

While every element from the periodic table can become charged, there are certain atoms

that are particularly advantageous for quantum computing. Generally, this class of atoms

has the property that when it is charged by removing an electron from its outermost orbital

(i.e. ionizing it), it will have low-lying energy levels similar to that of Hydrogen. This

50

class of Hydrogen-like ions is useful because these ions have a cycling optical transition,

which aids in state preparation and detection. 1

We have chosen to do the majority of our research work with an isotope of the

element Ytterbium (abbreviated as Yb), with atomic mass (combined number of protons

and neutrons) of 171. This isotope, when positively charged, will henceforth be shown as

171Yb+. 2 Specifically, 171Yb+ has the following desirable properties:

• Hydrogen-Like: When the atom is ionized, 171Yb+ will behave similarly to Hydro-

gen because it only has a single valence3 electron.

• Clock States: 171Yb+’s nucleus has nuclear spin of spin-1/2. For our purposes,

that means that 171Yb+ has easily accessible “clock states” which are first-order

magnetic field-insensitive. 4 This reduces their sensitivity to noise from fluctuating

magnetic fields.

• Reasonable Transition Wavelengths: Performing quantum operations on trapped

ion qubits typically requires using lasers, though research is being performed to

minimize the need for these [86, 87, 88]. The goal of performing quantum opera-

tions quickly & at high fidelity requires precise 5 & high-power lasers at the desired

transition frequencies6. For a variety of reasons, the desired quality of lasers are not

1Cycling transitions are useful for emitting many photons (light particles/waves) without decaying to
undesired states. This allows high fidelity state detection even when collection optics only collect a small
fraction of the scattered photons. Measuring the qubit state (e.g. |0⟩ or |1⟩) via a cycling transition allows
determining the quantum state (state detection) with high-fidelity by the presence or absence of photons
during a collection window.

2Sometimes this isotope of neutral Ytterbium is abbreviated as Yb-171.
3Outermost-shell
4When a field of a few Gauss is applied, a small linear field shift can be observed, so 171Yb+ is not

perfectly magnetic field-insensitive.
5e.g. Narrow linewidth.
6Equivalently, wavelengths.

51

available at every optical wavelength. However, 171Yb+ has an advantageous set of

wavelengths (described in Section 3.4) with lasers & optics generally available.

• Hyperfine Clock Transition: This indicates that the 171Yb+ qubit is generally insen-

sitive to its environment. In technical language, it has a very stable oscillation rate

that can be first-order magnetic field-insensitive, so any quantum information that

is stored in the qubit will remain there for long periods of time [89, 90].

• Easy to source: 171Yb, though not the most-common naturally-occurring isotope of

Ytterbium, can be easily sourced from various laboratories. Through these sources,

we have procured isotopically-enriched samples of 171Yb, which contains > 95%

neutral 171Yb, with the majority of the remainder being various other isotopes of

Ytterbium.

• Non-radioactive: Isotopes of certain elements can be radioactive, which compli-

cates their handling and increases the dangers of a laboratory environment. Certain

other leading trapped ion systems are using radioactive 133Ba [91]. 7

3.3 Ion Trap Physical Hardware

In this section, we will provide an overview of the EURIQA Breadboard Ion Trap Quan-

tum Computer. This is a single trapped ion quantum computing system that was designed,

constructed, and operated by our academic laboratory.

Ion trap quantum computers are different from the transistor-based computers that

7Several Barium isotopes are radioactive. While 133Ba is not used for medical imaging due to its long
half-life, various other isotopes of Barium are used for medical radiological imaging [92].

52

Hardware Class Device Specifics

Ion Trap Sandia HOA 2.1.1
Atomic Sources 171Yb & 138Ba
Vacuum Chamber Custom design [93, Sec. 4.1]
RF Resonator Custom design [93, Sec. 4.2.2]
Global AOM Cell L3Harris Single-Channel AOM
Individual AOM Cell L3Harris 32-Channel AOM
Cooling/Pump Laser Nichia 370 nm laser diode, various AOM/EOMs
Coherent Qubit Laser Coherent 4W Paladin Laser
Readout PMTs Hamamatsu individual PMTs
High-NA Imaging Lens Custom PhotonGear High-NA lens
Imaging Fiber 32-core custom fiber
Trap DAC Custom SNL-designed 112-output DAC board
Trap DAC DC Filters 5th-order RC Lowpass Filter, −3 dB@ ≈ 1 kHz
Qubit Gate Drive Xilinx ZCU111 RFSoC with custom software (SNL Octet)

Table 3.1: Key Hardware Components of the EURIQA Breadboard Ion Trap System.
This is not a full bill of materials (BOM), but it includes many of the unique system
components. More details can be found in [93, Ch. 4].

most people are familiar with. First, the “quantum computer” itself requires initialization

other than providing power: an ion trap only becomes a quantum computer when it holds

at least one ion, and when operations are performed on it (e.g. preparing the qubit into

|0⟩).

Second, the ion trap quantum computer physically looks very different than a tra-

ditional computer. Today, a standard processor core (CPU) is a processed semiconductor

bonded to a package, connected to a motherboard that provides I/O, e.g. communication

with a storage device. For ion trap quantum computers, the core of the system is the

trapped ions themselves (I/O operations will be described in Section 3.7). These ions are

suspended in space, held in place using a combination of static (DC) and oscillating elec-

tromagnetic (EM) fields at RF frequencies (usually called RF fields for simplicity). The

RF signal is generated by an external RF source, and then routed to a device called the

53

ion trap via a resonator. 8

3.3.1 Ion Trap

The ion trap is responsible for ensuring that the individual ions, once ionized and cooled,

remain approximately in the correct position in space. There are many different config-

urations of these ion traps [95, 96]. The main types of RF Paul traps are blade (or rod)

traps, and surface electrode traps. Both types of traps (see Fig. 3.1) need RF electrodes

where the RF trapping fields are emitted. In a rod (blade) trap, the trapping electrodes

are macroscopic rods (blades) typically arranged in approximately a rectangular config-

uration (Fig. 3.1a). The trapping region is then parallel to the rods (blades), along the

line equidistant from all of the rods (blades). In a surface electrode trap (Fig. 3.1b), a

similar trapping field is emitted from electrodes that are along a flat surface (like a PCB).

The ion(s) are then pinned (trapped) floating above the flat surface, parallel to the RF

electrodes/pads.

8Note that the exact amplitude and frequency of the RF signal depends on the mass of the ion, and the
ion trap itself. It is also important that the RF voltage be held relatively constant, and treated with care.
The RF source is driving a large amount of power to the ion trap, so catastrophic failures can be caused by
either quick changes of this power/voltage or driving the voltage of an ion trap too high [94].

54

(a) Cross-section of a 4-rod
Trap

(b) Isometric View of a
Surface Trap

Trap Surface

Figure 3.1: Diagram of common ion trap types. The unfilled circle denotes an ion.
On a blade (rod) trap (Fig. 3.1a), the trapping RF potentials are provided by the blades
(rods). Rods and blades can be used interchangeably. Blades are sometimes used instead
of rods to provide better optical access, but the physics will be similar regardless of the
physical shape of the trapping electrodes on a blade/rod trap. If multiple ions are trapped
simultaneously in a blade trap, they will extend in a line above/below the pictured ion,
perpendicular to the page. Surface Traps (Fig. 3.1b) are commonly microfabricated, and
consist of many electrodes on the surface of the trap (not shown) that together create the
trapping potential. A Surface Trap is effectively an “unwrapped” blade trap, where all
electrodes are on the same plane.

55

(a) Photograph of an HOA 2 chip trap (b) Diagram of chip trap, ion, and lasers

Figure 3.2: Sandia HOA 2 surface electrode ion trap. The HOA shown in Fig. 3.2a is an RF Paul trap. The line in the center of the
trap is the “slot”, which allows directing laser beams perpendicular to the surface of the trap through the slot. The trap is in a bowtie
shape to allow for tighter optical focusing at the ion location; tapering the width of the trap towards the center allows for a wider range of
access angles compared to a rectangular-shaped trap. The ions are moved from loading regions near the ends of the bowtie to the center
of the slot, where they are manipulated using laser beams.
Fig. 3.2b shows the HOA, laser beams (red shading), and ions (atom symbol) that we use to perform qubit operations. In our system,
the HOA is suspended upside-down (i.e. inverted relative to Fig. 3.2a). The chain of ions comes out of the page. The ions are trapped
about 70 µm above the surface of the trap (i.e. the electrodes). The vertical laser beam is one of the “individual” addressing qubit laser
beams, which is tightly focused on a single ion, while the horizontal laser beam is a broad “global” beam that addresses all ions at the
same time.
Image Credits: UMD JQI/Monroe Group.

56

Our ion trap is a surface electrode trap, specifically the Sandia High Optical Access

(HOA) 2.1.1 [97, 98, 99, 100, 101, 102, 103], henceforth shortened to the Sandia HOA.

This ion trap is an electronically-passive device, which acts as somewhat of an antenna to

emit the RF fields in a specific pattern, effectively creating a semi-stable RF null where

the ion(s) will rest [85]. Surface electrode traps are microfabricated ion traps that are

functionally similar to a Printed Circuit Board (PCB), but smaller and typically made out

of silicon. 9 Just as a PCB might have exposed copper traces that can inadvertently emit

EMI (Electromagnetic Interference), a similar process can emit the (intentional) electric

fields that trap an ion.

Let us consider for a moment these EM fields. While it is appropriate to consider

the EM field at the point of the ion, for simplicity in this context we will only consider the

voltages at the ion trap that produce the EM fields that the ion experiences. As previously

mentioned, there are two types of these EM fields: static (DC) and oscillating (RF). The

static field can be thought of as controlling the axial10 confinement, and the oscillating

field can be thought of as providing the radial11 confinement of the trap. We will label

these DC and RF respectively, and use the terms electrode, electrical net, and pad inter-

changeably. The Sandia HOA has one exposed RF electrode, and over one hundred DC

electrodes. Some of the DC electrodes share a source (the same input pin is connected to

multiple electrodes), so there are actually only 94 DC control signals to the Sandia HOA

[97]. The control of these Trap DAC signals will be discussed further in Section 4.5.

9The primary requirement is that the surface layer be made of an insulator with conductive pads/traces
for producing EM fields.

10i.e. along the length of the trap. In Fig. 3.2b, this is normal (perpendicular) to the plane of the page.
11i.e. radial when looking directly into the “chain” of ions. In Fig. 3.2b, this is the plane of the page.

57

3.3.2 Out-of-Vacuum Components

Another important conceptual difference between the physical hardware for classical &

quantum computers is that a quantum computer requires high isolation from its environ-

ment. For a highly-sensitive quantum computer, every interaction with its environment

will decohere (degrade) its “quantumness” (more precisely, the quantum information

stored in a qubit), so interactions between the quantum part and its surroundings (en-

vironment) should be minimized as much as possible. This is primarily realized through

reducing the temperature & increasing physical isolation.

Most quantum computers will typically operate at extremely low temperatures &

pressures. 12 For superconducting qubits, these goals are simultaneously achieved by

using a cryostat (dilution refrigerator) which will cool the superconducting qubits & sur-

rounding equipment to ≈ 20mK. In trapped ions, these two goals tend to be implemented

separately: temperature reduction of an ion is executed by various methods of laser cool-

ing [104], while physical isolation is primarily provided by encapsulating the ion trap in a

vacuum chamber, which can be evacuated to reduce the background gas molecules in the

system. This extremely low pressure allows ion traps, including EURIQA Breadboard,

to operate at room temperature, meaning everything is at room temperature (≈ 25 ◦C)

except the ions. 13

12Realistically, temperature & physical isolation are related. The primary way that heat transfer (whether
heating or cooling) occurs is via collisions between two particles of different energy, which initiates an
energy transfer between the two. With enough collisions and constantly cooling one of the two substances
(particles), average temperature will decrease. As the temperature decreases, collisions will become less
frequent, which increases physical isolation.

13Many trapped ion quantum computers are now using cryogenic coolants to reduce the overall temper-
ature of their vacuum chamber system [67, 70, 105, 106]. While this may seem to implement temperature
reduction, the primary benefit that this provides is lowering the background gas temperature, which reduces
the rate of collisions between ion(s) & the background gas. This then lowers the frequency of ion chain loss

58

Temperature management of the ions via laser cooling will be discussed later in

Section 3.6.2.2, but it is important to understand that there are many different laser beams

that need to be projected at the ion chain in order to operate the trapped ion quantum

computer (see Table 3.2 for a summary of these lasers). Each of these laser beams must:

• Project to a small location: to be focused on individual ions to allow for individually-

addressed single- and multi-qubit gates. 14

• Be mechanically robust: minimal susceptibility to drift or mechanical vibrations.

• Sufficient power: Higher laser power tends to mean that the gates can be executed

faster, which minimizes overall circuit runtime to reduce the effects of decoherence.

• Stable frequency: some of the atomic transitions in 171Yb+ have relatively narrow

linewidths, such as the 435 nm transition (see Fig. 3.3). Even if the transition is not

narrow, a drifting laser frequency can negatively impact reliability and uptime.

To produce these laser beams, there must be nearby space dedicated to producing

& refining the laser beams to the desired optical characteristics (i.e. position, shape,

intensity, etc). For our system, we chose to separately generate the laser beams, and then

fiber-couple15 them to beam positioning boxes. These boxes are directly mounted to the

vacuum chamber16, and can be minutely adjusted via motors.

(Section 3.6.4).
14The waist (width) of the laser beam at the ion should be much less than the spacing between the ions.
15i.e. direct the laser beam into an optical fiber, route an optical fiber near the destination, and then

modify the output of the fiber to produce the final intensity/shape.
16i.e. mechanically referenced to the vacuum chamber

59

3.4 171Yb+ Atomic Physics

The energy levels and structure of an ion are important to understanding how operations

on the atom are performed. In the ideal case, we want to consider a trapped ion as a sys-

tem that can only be in one of two states (e.g. {|0⟩ , |1⟩ }). In reality, most modern qubits

are encoded in systems which have more than two levels, and two levels are selected for

the qubit. As such, we need to consider the atomic states (levels) of a given ion.

3.4.1 What are atomic levels?

Atomic levels are the different states that an atom/ion can occupy. These energy levels

correspond to different configurations of the electron shell around a nuclear core. When a

certain amount of energy is added to/subtracted from the system, in our context typically

by lasers, the atom can transition between different energy levels.

The difference between two atomic levels is typically described by its transition

wavelength (or equivalently the transition frequency, via ν = c
λ

). 17 The atom can natu-

rally change (decay) from one higher-energy state to a lower-energy state. 18 When this

happens, it will emit a photon of a certain frequency, which is at the transition wavelength

of the difference between the state that it started in and the state that it decayed into. There

are many different transition wavelengths in a given atom, which collectively generate a

spectrum of wavelengths. This is called the decay rate. The lifetime of an atomic state

is the average time 19 that an atom will remain in a given state before decaying into a

17In this equation, λ is the wavelength, c is the speed of light, and ν is the frequency.
18The decay rates for certain atomic states are extremely long (e.g. 5.4 years for 171Yb+’s 2F 7/2 state),

while others are extremely short (e.g. ≈ 8 ns for the 171Yb+ 2P 1/2 state). See Fig. 3.3.
19Specifically, the time after which 1

e ≈ 37% of the original state remains.

60

different state, typically abbreviated as τ .

A few other key concepts that are important to understand about atomic physics and

energy diagrams:

• Selection rules: These determine which states (levels) are coupled to each other,

i.e. if it is possible to transition between any pair of energy levels A→ B.

• Hyperfine states: These are adjacent substates to a general electron orbital shell

configuration that arise when an atom/ion has nuclear spin, and correspond to dif-

ferent spin configurations of the electrons relative to the nuclear spin of the atom-

/ion. The spin states will align to some degree with the background magnetic field,

which creates different sub-states of the same energy level, just offset by a (typi-

cally small) amount. These different states can be typically addressed by modifying

the polarization of the driving laser beams, or by tuning the laser frequency to be

the same as that particular state.

• Ground State: The ground state is a special state of the atom & its level diagram.

This is the lowest energy state that the atom can be in. In other words, any opera-

tions on its electron shell will add energy to the atom. In 171Yb+, the ground state

is 2S1/2.

• State Transitions: A typical way of transitioning between different atomic states is

by directing a laser beam at the ion. The laser beam’s wavelength (frequency) must

be at (near) the transition frequency between the two levels.

• Linewidth: This is a measure of the allowed frequency ranges that can drive a tran-

61

sition, which typically follow a Lorentzian profile. The linewidth of a state is in-

versely proportional to the state lifetime. Generally, transition linewidths that are

wide (≈ MHz) are easy to drive, while narrow ≈ Hz linewidths will be more dif-

ficult. The primary difficulty in driving transitions with narrow linewidths comes

from stabilizing the laser frequency to the very narrow range of the linewidth.

3.4.2 171Yb+ Atomic Levels

171Yb+ is a Hydrogen-like ion with a hyperfine clock state transition, as shown in Fig. 3.3.

For our setup, we have chosen to define our qubit levels |0⟩ & |1⟩ as sub-levels separated

by a hyperfine splitting of ≈ 12.6GHz (see Section 3.7.1.4 for the exact number). 20

20Hyperfine splittings arise due to interactions between an atom’s electrons and its nucleus.

62

Figure 3.3: Diagram of the atomic energy levels of 171Yb+ ions. The horizontal lines in this diagram denote different energy levels of
171Yb+. Within a given shell configuration (e.g. 2S1/2), there are different sub-levels that correspond to different electron- & nucleus-spin
configurations. We chose to define our qubit states as sub-levels of the 2S1/2 manifold: |0⟩ ≡ |F = 0,mF = 0⟩ , |1⟩ ≡ |F = 1,mF = 0⟩ .
To rotate between |0⟩ ↔ |1⟩, we use a pulsed 355 nm laser to off-resonantly couple to the 2P 3/2 & 2P 3/2 levels, which can yield
a transition between |0⟩ ↔ |1⟩ if the difference between two paths of this laser are equal to the frequency difference between the
|F = 0,mF = 0⟩ & |F = 1,mF = 0⟩ states. This is called a stimulated two-photon Raman transition. Note that this frequency difference
can change depending on e.g. the magnetic field. The dashed lines denote transition wavelengths between two energy levels. Dotted
lines indicate spontaneous decay transitions from a higher-level energy state to a lower-level energy state. The γ

2π
denotes the transition

wavelength of this state, and τ denotes the lifetime of that state. For quantum computation, the primary states in this diagram that
concern us are 2S1/2, & 2P 1/2. For state preparation, we also need to consider 2D3/2, as discussed in Section 3.6.2.2. Finally, note that
this is a partial state diagram, and not every possible state of 171Yb+ is shown here. Image courtesy of George Toh.

63

3.5 Operations

A quantum computer must be able to perform operations on qubits in order to be useful.

Generally, operations fall into several classes:

• Ion (Non-Qubit) Operations (Section 3.6): These operations can be thought of as

“bookend” operations, in that they happen before or after the main sequence to

prepare or measure the ions in some way, but are generally agnostic of what state

that the qubit is in.

• Qubit Operations (Section 3.7): These operations are roughly unitary, implement

the general concepts from Section 2.4, and comprise both single-qubit, two-qubit,

& multi-qubit operations.

3.6 Ion (Non-Qubit) Operations

In this classification, ion operations are purely atomic physics-oriented, and have no direct

relation to any coherent quantum information for ions (other than the act of measurement).

That should not be mistaken as having no relation to quantum computation. Ion opera-

tions are extremely important for preparing quantum states. However, these operations

are logically distinct from quantum operations, in that they are fundamental to quantum

operations, and are required to prepare an ion to be used as a qubit, or to move classical

information into or out of an ion (i.e. state preparation & measurement).

Following sections will discuss how each of these operations are implemented on

our ion trap quantum computer. The majority of these operations are summarized in

64

Purpose State Sequence Transition
Wavelength
(Approx.,
nm)

Ionizing neutral Yb 171Yb → 171Yb+ 399
Doppler Cooling & State Readout 2S1/2 → 2P 1/2 ⇝ 2S1/2 369.5
“Repump” to computational sub-
space

2P 1/2 ⇝ 2D3/2 → 3[3/2]1/2 ⇝ 2S1/2 935

Pump into |0⟩ 2S1/2 → 2P 1/2 ⇝ |0⟩ or ⇝
(|F = 1⟩manifold → 2P 1/2 ⇝
|0⟩)

369.5

Raman operations 2S1/2 ⇀ (between 2P 1/2 & 2P 3/2) 355

Table 3.2: Main transition wavelengths in an 171Yb+ qubit. This is a non-exhaustive
list of the main wavelengths that are used when performing quantum operations on
171Yb+. In the above table, → denotes a stimulated transition driven by a laser,⇝ denotes
a spontaneous decay transition (i.e. not laser-driven), and⇀ denotes an off-resonant tran-
sition (i.e. a transition that is not directly driven). These operations are all described in
Section 3.6.

Table 3.2, which summarizes the different lasers & atomic levels needed to perform a

given operation.

3.6.1 Ion Loading Operations

The first step in operating on a trapped ion qubit is to procure the trapped ion itself. This

process has two steps: moving the atom to the proper location, and removing electron(s)

from the atom to produce a positively-charged atom. These two steps can occur in any

order, as long as at the end of the process an ion is injected into the “trapping region”

where the RF fields of the ion trap are suitably configured.

To consider how atoms are moved from their storage location to the trapping region,

it is important to recall the system constraints. Ion trapping typically occurs in a sealed

vacuum chamber (Section 3.3.2). Thus, ions cannot be directly injected into the system,

65

and must be produced from components which are already under vacuum (i.e. in the

vacuum chamber). The community has settled on two methods for this process:

• Thermal Oven: This method involves heating a chunk of target material (in our

case, primarily neutral 171Yb) at high temperature to sublimate it21, which causes

atoms to emit in arbitrary directions. The spray can be directed using a tube, which

focuses the spray towards the target trapping zone. A small percentage of these

ions will be moving at the correct velocity (energy) to be ionized & trapped by the

oscillating RF fields (Section 3.3.1). These ovens typically have a warm-up time,

which is necessary to produce a sufficient beam of atoms (flux) to ionize atoms. 22

• Laser Ablation: This method involves firing a high-energy laser at a small chunk of

target material (171Yb), which will spray in all directions and some of which will be

small & slow enough to be trapped. This method typically does not use an ionizing

laser, because the high energy of the ablation will typically produce some ions.

Atoms are generally uncharged (neutral) when in storage, and must be charged to

be used as an ion, typically by removing an electron. 23 For our system, we chose to use

an ionizing 399 nm laser to excite an 171Yb neutral atom from 1S0 → 1P 1, and then a

393 nm laser to remove an electron [93, Sec. 2.2].
21We heat this using an electric current, in a process similar to that of turning on a tungsten electric

lightbulb.
22Our oven is actually positioned on the back (non-electrode) side of the HOA. Atomized Yb will be

directed towards the rear of the loading zone via the tube of the oven, and then will be reduced to a smaller
fraction by use of a slit in the HOA. Because only a small fraction of all atoms ejected from the oven will
be ionized, it is preferable for the many spare atoms to be in a position where they will have minimal effect
on normal qubit operations.

23It is possible to doubly-ionize an atom, producing e.g. 171Yb++. This is uncommon, but has been
observed.

66

3.6.2 State Preparation Operations

Once an atom has been ionized, and then the resulting ion is trapped, a few steps still

remain to be able to perform coherent quantum operations on the ion. These steps are

cooling, and then state preparation (preparing the qubit in |0⟩).

3.6.2.1 Ion Ground State Cooling

To cool an ion to the ground state, the first step is typically Doppler cooling [104].

Doppler cooling is a process by which an ion absorbs a photon from a laser beam, and

then emits a photon in a random direction. The key to Doppler cooling is that the laser

is tuned to the red (lower frequency) of the transition resonance frequency, which causes

the ion to preferentially absorb the photon when the ion is blue-shifted due to its velocity

relative to the laser beam. Thus, the ion will mostly absorb energy when moving to-

wards the origin of the laser photons, providing a net cooling/slowing force on the ion

[93, 104, 107].

The purpose of Doppler cooling in our sequence is to reduce the motional energy,

or temperature, of an ion. Motional energy of an ion is measured in units of motional

quanta, called phonons and which are represented as |n⟩. The motional energy is tallied

for each mode and axis of the harmonic oscillator of the ion separately. For a chain of N

ions in 3-dimensional space, there are 3N phonon modes in the chain. 24

It is important to note that measuring the number of phonons (a quantum property)

is a statistical process, because the value must be calculated from an average of several

24This is important for the discussion in Section 3.7.1.1.

67

rounds of quantum measurement. Even with n̄ ≤ 1.0 quanta, for a single experiment it

is still possible to have relatively high n, e.g. n = 3quanta. Finally, remember that n̄ is

implicitly a timestamped value, which is measured at a certain point in the experimental

sequence; measuring earlier or later could yield different n̄. Generally, an ion that is

not continuously cooled will heat some amount [108], which is measured in quanta per

second. Thus, if a system has n̄ = 0.1 quanta immediately after cooling, and a ˙̄n =

10 quanta/s, after 100ms of no further cooling the n̄ will be n̄ = 1.1 quanta, assuming

linear heating rates. 25

Doppler cooling is highly effective at cooling from high-energy motional states.

However, Doppler cooling has a lower limit to which it can cool. Since many multi-qubit

gate schemes for trapped ions rely on motional state coherence (e.g. the Mølmer-Sørensen

gate (MS) [1], or an N-qubit gate as described in Section 7.2), to obtain the highest fidelity

it is desirable to have the lowest achievable motional quanta. The Doppler limit for 171Yb+

on the 369 nm cycling transition is ≈ 5 quanta [109], significantly higher than desired for

high-quality gates (targeting ≪ 1 quanta).

To calculate the Doppler cooling limit for 171Yb+, we use the equation for the

Doppler laser cooling temperature for an atomic transition in a harmonic ion trap, de-

fined as [110]:

E∞
i =

ℏγ
4

(
1 +

1

3 cos2(θ)

)[
∆

γ
+
γ(1 + s)

4∆

]
(3.1)

where E∞
i is the energy along the ith axis after infinite cooling duration, ℏ is Planck’s

constant, γ is the radiative linewidth of the atomic transition that is being cooled, θ is

25The heating rate ˙̄n is the change in phonon population n̄ over time (the derivative of n̄). Refer to [108]
for a thorough treatment.

68

the angle of a single laser beam relative to the ith axis, ∆ is the red detuning of the laser

beam frequency ω from the transition frequency26 ωL (∆ = ω−ωL), and s is a saturation

parameter denoting the laser beam intensity I relative to the saturation intensity Is, where

s = I/Is. This expression is minimized with parameters s ≪ 1, θ = 0, & ∆ = γ/2,

resulting in the minimum Doppler temperature of

E∞
i,min =

ℏγ
3

(3.2)

Given that γ = 19.7MHz for the 370 nm 2S1/2 to 2P 1/2
171Yb+ transition, and using

the Boltzmann’s constant kB, the Doppler cooling limit in our experiment is:

E∞
i,min =

ℏ19.7MHz

3
= 6.925× 10−28 J (3.3)

E∞
i,min = kB ∗ T (3.4)

T ≈ 50 µK (3.5)

This can be equated to the number of phonons in a vibrational mode ωm by using [67, Eq

2.2]:

E∞
i,min = ℏωm

(
n̄+

1

2

)
(3.6)

Assuming that the lowest-frequency axial mode of an ion chain is ≈ 200 kHz27, then the

26Atomic transitions are typically denoted by their wavelength, but can be equivalently described as a
frequency using ν = c

λ
27This value of 200 kHz is representative for our work with 15-ion chains. It is primarily dependent on

the confining DC voltage potential; the axial COM frequency of a single ion will typically be higher.

69

minimum number of phonons after Doppler cooling will be:

19.7MHz

3
= 200 kHz

(
n̄+

1

2

)
(3.7)

n̄min ≈ 32.33 quanta (3.8)

Thus our cooling has a second stage to go beyond the Doppler cooling limit. There

are several schemes that would theoretically work, but we have chosen to use sideband

cooling [111], specifically parallel sideband cooling [109]. With SBC, we are able to

achieve cooling to n̄ < 0.5 quanta for a 15-ion chain ([93, Fig 5.2]).

3.6.2.2 Ion State Preparation

Once the ion(s) are sufficiently cooled near their ground motional state(s), the next step

in an experiment cycle is to prepare them into the qubit basis, typically |0⟩, via a process

called optical pumping [112], which is illustrated in Fig. 3.4. The goal of this step is to

reliably move an ion into the |0⟩ atomic level by forcing the ion to progress through a

sequence of atomic level transitions that “trap” it in the desired state.

Effectively, this process works by:

1. Turning on the 370 nm laser (this includes properly aiming the laser beam at the

ion(s) to prepare).

2. Adding sidebands to the laser using AOMs to only excite the 2S1/2 |F = 1⟩ manifold

states (|mF = {−1, 0, 1}⟩) to the 2P 1/2 |F = 1,mF = {−1, 0, 1}⟩ states (see [113,

Fig. 2.2] for reference).

70

2P1/2

2S1/2

|0⟩

|1⟩
F=1

F=0

F=1

F=0

369 nm

2.1 GHz

12.6 GHz

Figure 3.4: 171Yb+ Optical Pumping State Diagram. This diagram illustrates the tran-
sitions that are needed to pump into the state |0⟩ of 171Yb+ (2S1/2, |F = 0,mF = 0⟩).
Blue solid arrows represent driven transitions (≈ 370 nm) via photon absorption. Dashed
purple arrows represent spontaneous photon emission. 369 nm and 370 nm are used in-
terchangeably because the transition is near 369.5 nm.

71

3. Allow the level to decay into |F = 0,mF = 0⟩. The lasers are not tuned to excite

the ion out of this atomic state.

4. If the ion decayed into a state other than |F = 0,mF = 0⟩, i.e. the 2S1/2 |F = 1,mF = {−1, 0, 1}⟩

states, those states are then excited to the 2P 1/2 |F = 1⟩ manifold, where it has an-

other chance to decay to the |F = 0,mF = 0⟩ state.

5. This process continues long enough that enough transitions have happened that it is

vanishingly unlikely for the 171Yb+ ion to be in any state other than |F = 0,mF = 0⟩

(|0⟩).

3.6.3 State Measurement Operations

After an experiment has completed, the state of the ion must be determined. Because this

information is stored in a physical qubit, this is effectively an “analog” operation, meaning

that this is a sampling operation that has some implicit error in approximating the actual

state. 28 Because this is an “analog”-style operation, it is useful to think of this operation

in terms of signal & noise. Many classical analog measurements are most effective29

if they maximize the Signal-to-Noise Ratio (SNR) for a given setup. A similar concept

applies to measuring ion state. There are certain characteristics that indicate the state of

the ion, and care was taken to maximize the difference between |0⟩ & |1⟩, maximizing the

probability of a correct state measurement.

To measure the state of an 171Yb+ ion, the ion must simply be illuminated with

28As an example, assume that the ion is definitively prepared in |0⟩. If your detection fidelity is 99%,
then 99% of the time this ion will register as |0⟩, and 1% of the time this ion will register as |1⟩.

29In terms of integration time, accuracy, precision, etc.

72

2P1/2

2S1/2

|0⟩

|1⟩
F=1

F=0

F=1

F=0

369 nm

2.1 GHz

12.6 GHz

Figure 3.5: 171Yb+ Readout State Diagram. Only qubits that are in |1⟩ will be excited
to emit light. Blue solid arrows represent driven transitions (≈ 370 nm) via photon ab-
sorption. Dashed purple arrows represent spontaneous photon emission. 935 nm light is
not shown here, though it is important to the readout process. The role 935 nm light is to
“re-pump” from the 2D3/2 state (which can be entered spontaneously when decaying from
2P 1/2) to the 2S1/2 |F = 1⟩ manifold. This ensures that the cycling transition will continue
to emit light if the qubit is in |1⟩, instead of stopping whenever the ion enters the 2D3/2

state.

73

369 nm and 935 nm light of the correct wavelengths, as shown in Fig. 3.5, and then scat-

tered 369 nm fluorescence from the ion should be collected. This process is similar to the

cooling cycle described in Section 3.6.2.1. We call the duration of this entire period the

“detection window”, and will assume that the illumination drive and signal acquisition

window will last for the entire “detection window”. To be more specific, the following

sequence happens from the perspective of the ion [114, 115]:

1. Illumination with 369 nm light of the appropriate frequency to perform excitation

(next step).

2. Excitation from 2S1/2 to the 2P 1/2, |F = 0⟩ manifold. The frequency is chosen so

that only ions which are in |1⟩ (specifically, the F = 1 manifold) will be excited,

but not ions that are in |0⟩ (|F = 0,mF = 0⟩). Thus, we call ions in |0⟩ “dark”, and

ions in |1⟩ “bright”, because only ions in |1⟩ can undergo this transition that results

in emitting photons. This is a convention choice for our particular ion; other ions

such as 40Ca+ tend to use |0⟩ as “bright”. 30

3. Spontaneous emission of a 369 nm photon. Alternatively, decay (≈ 0.5%) to the

2D3/2 state, which is repumped to 2S1/2 |F = 1,mF = 0⟩ via 3[3/2]1/2 using 935 nm

light.

4. Repeat 1-3 until illumination ends.
30It is important to note that the ONLY states that will fluoresce in this scheme are 2S1/2 |F = 1⟩

manifold (at readout time during an experimental sequence, practically the entire population will be in
|F = 1,mF = 0⟩ and not the mF = {−1,+1} states). The converse is that atomic states that are not
|1⟩ (more precisely, |F = 1,mF = {−1, 0, 1}⟩) will be indistinguishable. So this scheme cannot tell the
difference between an ion in |0⟩ and one that is in a stray atomic level that is not in the computational
subspace. For instance, a collision can force an ion to the 2F 7/2 state, which will also appear dark and thus
indistinguishable from |0⟩.

74

Once the photon is emitted from the ion, it will scatter in a random direction in 3D

space. This photon will be collected with some probability via a collection of optics, and

then routed to a detector. In our system, the primary loss in this chain is due to the first

lens, which although being relatively large31 (NA = 0.63) still only collects ≈ 7.4% of

the photons spontaneously emitted by the ion ([93, Eq. 4.2]).

Specifically, in order to be detected, this entire sequence of events must occur:

1. 369 nm Photon Emission from the ion.

2. Photon Collection by high-NA lens.

3. Photon Transmission by fiber (32-channel fiber, roughly one per ion that the hard-

ware supports).

4. Photon Amplification by Photo-Multiplier Tube (PMT). This generates an electrical

signal when a photon is collected.

5. Signal Acquisition: the electrical signal is conveyed over electrical transmission

lines and registered by a digital input device (described in Chapter 4).

6. Event Counting: each input event during the readout window is recorded in a buffer,

and then counted by the digital control device. 32

31In terms of overall angle covered.
32We have chosen to count the number of input photons, discarding the event timestamps. If pursuing

high-fidelity state readout, this information could be incorporated for slightly higher readout fidelity [116,
117]. The general idea behind this scheme is that the 171Yb+ readout scheme has a time-dependence on
when photon counts occur, and the time of photon arrival can indicate state transitions in the ion. For
example, over a detection window the ion could initially be “dark”, and then later be “bright”. This is
called dark-to-bright pumping. Bright-to-dark pumping is also a potential error. These errors are both more
likely to occur at later times in the detection sequence, so signals earlier in the detection window should be
given more weight.

75

Operation Type Example Operation

Whole-Chain Ion Chain Movement, Motional Mode Adjustments
Sub-Chain Chain sorting, Split/Merge Chain
Individual Ion Ion Loading (Merge to Chain)

Table 3.3: Example of Ion Chain Operations. These are just a subset of all possible
operations, and will be summarily covered in Section 3.6.4. Sub-chain operations will be
discussed in Chapter 8.

Once the approximate number of photon events has been counted, discrimination

must still be applied to determine if the measured qubit is in |0⟩ or |1⟩. In our system,

we have decided to use simple thresholding to determine which state that our qubit is

in. We have previously collected data (e.g. [93, Fig. 2.9]) indicating the number of

photons collected when the ion is in |1⟩ vs in |0⟩, and thus calculated the State Preparation

& Measurement errors (SPAM) ([93, Table 5.1]). Based on these histograms, we have

decided that the optimal threshold is one (1) count. In other words, if ≥ 1 count is

recorded, we record |1⟩, otherwise we record |0⟩. This is admittedly a simple method for

state discrimination, but even with this crude method our average single-qubit SPAM error

is still ≈ 0.46(2)%. Other methods for state discrimination exist for ions [116, 118, 117],

but we have not yet seen the need to push our measurement fidelities to this level.

3.6.4 Ion Chain Operations

Finally, there are certain operations that are performed on a chain of ions as a whole.

These generally fall into the categories of whole-chain operations, sub-chain operations,

and individual ion operations.

The whole-chain operations are gross changes that tend to affect the state of all ions

76

together. This is the regime where all ions are together in a single potential well, and are

all affected equally. Moving the ion chain is simply moving the entire set of ions together.

Adjusting the motional modes is described thoroughly in [119, Chapter 3].

At the other extreme is the individual-ion operation. In normal operation, the small-

est unit that we care about is either a sub-chain or the entire chain. However, to get to the

point where an entire chain of ions can be used, we must first create a chain of ions.33 Ion

chains are typically built one ion at a time by loading an ion (described in Section 3.6.1),

and then merging it into the potential well where the remainder of the chain is stored. For

loading the initial ion, the initial condition is simply that the well that would contain the

chain does not hold a single ion. This process is then repeated until the desired number

of ions are loaded. In our case, we do not have ion detection in the loading region (to see

if the ion has been successfully loaded during one pulse of the ionization lasers), so we

repeatedly attempt the sequence of:

1. Attempt to load ion: Described in Section 3.6.1.

2. Shuttle ion to chain. At this stage we don’t actually know if there is an ion, but we

still move the well that would contain the ion near the chain, which is approximately

in the center of the trap (maybe offset by a few hundred micrometers).

3. Check (Inspect) newly-loaded ion presence. This step confirms that an ion is present

after loading but before the merge into the chain. This allows issues with loading

to be isolated from the more voltage potential-sensitive issues of chain merging.

33An ion chain is sometimes called an ion crystal because it is a repeating sequence which are treated as
a single unit, with lattice sites operated by individual ions.

77

4. Merge ion to the chain. This is effectively the same as the previous step, but this

step is somewhat delicate so it is important to consider it separately.

5. Check if chain size increased. Increment a counter accordingly. 34

6. Repeat steps 1-5 until desired chain size (length) is reached.

Once these steps are completed, then the number of ions in the chain is checked using

a center-scan. A center scan consists of shifting the potential well of the ions along

the length of the trap (perpendicular to the laser beam), while performing a short Rabi

pulse (described in Section 3.7.2). A Rabi pulse is one of the simplest quantum pulses,

consisting of a coherent transfer (|0⟩ ↔ |1⟩), in this case immediately followed by a

measurement of the qubit state. If all of the ions are present and equally spaced, then we

should see a Gaussian curve on each PMT channel around the same point.

Once an ion chain is loaded, it is important to remember that it is not a static object.

Due to events such as collisions with the background gas, the ions can spontaneously

reorder. When all of the ions are of the same species (i.e. the same isotope & charge), then

34In our setup, we detect the number of ions using the fluorescence collected on each PMT for a chain
of ions during cooling. When an ion is added, the fluorescence will exhibit roughly a stair-step behavior,
illustrated in Fig. 3.6 (see also [93, Fig. 5.1b] for an image of all PMT channels when loading). The “stair-
step” is due to the ions aligning with and then anti-aligning with the PMTs that collect their fluorescence.
In our system, our fibers are imaged onto a chain spacing of ≈ 4.45 µm. However, the voltage potentials
need to be properly adjusted to align the ions to the PMT imaging, but a chain is needed in order to
perform this calibration. To bypass this race condition, we create a good-enough potential well based
on the rough number of ions (e.g. one for the first 8 ions, one for the next 8 ions, etc.), and assume
that enough total fluorescence will be collected. Then, when an ion is added to the well, the ions will
shift roughly from aligned with the PMT to anti-aligned, which will cause the total fluorescence to drop.
Thus we can use a simple dot-product between the previous fluorescence (number of PMT counts) and the
current fluorescence. If the dot-product is greater than a threshold, we assume that an ion has been added
(incrementing a counter), otherwise we assume that the load attempt failed and another attempt should be
made. This counting method is a rough approximation, and it would obviously be more optimal to create
and calibrate a different potential well for every number of ions up to the desired number of ions. However,
we decided that the complexity of that approach was not necessary since our simpler approximation is
reliable enough.

78

(a) Plot of PMT Counts versus number of ions

0 1 2 3 4 5

0

50

100

of Ions

#
PM

T
E

ve
nt

s
in

D
et

ec
tio

n
W

in
do

w
Example PMT Counts for Single PMT Channel

(b) PMT alignment with
single ion

Ion

PMT

(c) PMT alignment with 2
ions

Ions

PMT

Figure 3.6: Example of light collection aligning then anti-aligning with ion(s). As
the number of ions in the well changes from odd to even, the number of photons collected
will dramatically drop because the ion chain is no longer aligned with the collection
PMT. To visualize this effect, imagine a single PMT imaging the bottom of a parabola
(simulating the potential well). With one ion, the bottom of the parabola is aligned with
the PMT. With two ions, the ions will repel each other, and now the center of the well
will be halfway between the two ions, causing the fluorescence collected by the PMT to
drop dramatically. This effect could be mitigated by shifting the center of the well to
align to the PMTs as the number of ions changes. However, we take advantage of this
effect during loading to produce a strong signal indicating that an ion has been added to
the well, indicating success in a loading attempt.

79

this is not an issue because all ions of the same isotope are identical. 35 By contrast, chains

of mixed ion species, such as those considered in [120], or currently in use elsewhere

[105, 121], will reorder into different sequences following a collision. In other words,

following a non-destructive collision event the ion chain has a tendency to reorder into a

different sequence of ions (typically not changing the total number of ions). The different

options for handling this situation will be presented in Section 8.3, but assume for now

that the optimal solution is reordering the scrambled chain into the desired configuration.

Reordering an ion chain into the desired configuration is similar to a sorting algorithm

from Computer Science, such as a simple inefficient Bubble Sort algorithm [122] or the

more-efficient Merge-Sort algorithm [123]. Broadly, these algorithms are sequences of

comparison (a < b) & swap ((a, b) → (b, a)) operations between the elements. Thus, an

essential operation on the ion chain to enable performing a chain sorting is the ability to

do an ion swap on an arbitrary set of ions in the chain.

In other words, to physically perform a chain sorting (reordering) operation, the

following physical actions must be performed for each step of the sorting algorithm:

1. Determine ions to swap

2. Isolate ions to swap

35This argument only holds when NOT operating on the ions as qubits (i.e. when performing gates on
the qubits). During qubit operations, unintended reordering of the ion chain will cause gates to be applied
to the incorrect ion(s)/qubit(s). In our scheme, we can check for ions using Doppler cooling on the 369 nm
transition. However, this is the same transition that we use to measure the qubits, so performing this
operation in the middle of qubit operations would collapse the state, defeating the purpose of any remaining
quantum operations. Thus, we have chosen to implement reordering detection between “shots” of a quantum
circuit. If reordering is detected, the previous shot could be discarded. We have determined that this an
acceptably small error for the experiment repetition rate that we currently work with (≈ 60Hz). We observe
reordering chain collisions approximately every 7.5min. Thus, we approximate that 7.5min

reordering event ∗
60 s
1min ∗ 60 shots

1 s = 27000 shots
reordering event →≈ 3.7× 10−3 % error.

80

3. Swap ions

4. Reconstruct chain

5. Check swap success

This sort operation will be addressed in further detail in Section 8.3.

Once all of these cooling and state preparation operations are performed, and the

desired chain configuration is obtained, then the set of ions can be considered a set of

qubits.

3.7 Qubit Operations

After being initialized into |0⟩, we can consider an 171Yb+ ion as a qubit. The next step

is to be able to apply single- and multi-qubit operations, which were broadly described in

Section 2.4. Here we will overview how these operations are implemented on a trapped

ion quantum computer.

3.7.1 Raman Operations

Before considering the specifics of gates, it is important to consider that there are two

coupled quantum systems in a trapped ion quantum computer. One of these is a qubit

mapped to the spin of the trapped ion atomic levels. The other is a motional harmonic

oscillator, derived from the collective motion of the ion(s) in the harmonic potential of the

ion trap.

Together, the Hamiltonian of a single trapped ion in a harmonic potential is [124,

81

Eq. 1][93, Eq. 3.5 & 3.15]:36

H = ℏΩσ+ exp (−i (µt− ϕ)) ∗ exp
(
iη

[
a exp (−iωtt) + a† exp (iωtt)

])
+ h.c. (3.9)

where

• Ω is the strength of the laser field, observed as the Rabi frequency of the qubit.

• σ± is the atomic raising/lower operator.

• a† & a are the creation and annihilation operators for a motional quantum (phonon),

respectively.

• ωt is the trap frequency of the ion trap.

• η = kxx0 is known as the Lamb-Dicke parameter, where kx is the projection of the

laser’s EM wavevector along the trap axis, and x0 =
√

ℏ
2Mωt

is the spread of the

ion’s wavefunction in the oscillator, and M is the mass of the ion. The Lamb-Dicke

parameter is effectively the coupling strength between an ion’s atomic states and its

motional state.

• µ is the detuning of the laser beam from the atomic transition wavelength.

• ϕ is the phase of the field relative to the atomic polarization.

• h.c. is an abbreviation for the Hermitian Conjugate of the entire sequence.
36After applying the rotating wave approximation (RWA)

82

(a) Example chain of 4 ions

-2 -1 +1 +2
(b) Free body diagram for Ion -2

Ion -2
CoulombAxial Confinement

(c) Free body diagram for Ion -1

Ion -1
CoulombCoulomb

Figure 3.7: Diagram of forces on 4 ions in a chain. The horizontal direction is along
X̂ , i.e. along the axis of the ion trap. The forces on Ions +1 and +2 are symmetric to
the forces on Ions -1 and -2, respectively. These free body diagrams omit gravity, the RF
confinement of the ion trap, and micromotion.

3.7.1.1 Trapped Ion Motion

A chain of ions, resting at the electromagnetic RF null point of the ion trap and prop-

erly cooled into a crystal, essentially is only subject to two forces: Coulomb repulsion

(due to the positively-charged ions repelling each other), and the static DC potential of

the ion trap (axial confining potential), as shown in Fig. 3.7. The residual motion of the

ions is modeled as a quantum harmonic oscillator. Each oscillation axis has an oscilla-

tor motional mode, which is quantized as phonons. Based on the position of the ions

and other static parameters, the equilibrium ion positions and harmonic motional modes

(frequencies) can be calculated.

Along the trap axis, due to the tight confining axial field, the ions can be thought of

as primarily stationary with some small harmonic oscillations. So we can then consider

the instantaneous position of the i-th ion in a chain of ions as:

X̂i = X̄i + x̂0i (3.10)

83

where X̄i is the average, static position of the ion, and the operator x̂0i is the i-th ion’s

harmonic oscillations. To obtain the position of the ions, we can calculate the mode

participation coefficient of each ion bim (collectively, the participation matrix), where i is

the i-th ion, and m is the mode index m = 1 . . . N , so x̂0i =
∑N

m=1 bimξ̂m. Note that ξ̂m

denotes a phonon mode m, oscillating at frequency ωm. Thus, the position of the i-th ion

is: 37

X̂i = X̄i +
N∑
m=1

bimξ
(0)
m

(
a†me

iωmt + ame
−iωmt

)
(3.11)

3.7.1.2 Ion Optical Spin Qubit

We will summarily derive the Hamiltonian for a trapped ion in a well (Eq. (3.9)). A full

derivation can be found in [93, Sec. 3.1.1-2]

The Hamiltonian for a non-interacting trapped ion is:

H0 = Hspin +Hmotion =
1

2
ℏω0σ̂z + ℏωm(a†a+

1

2
) (3.12)

When a laser beam addresses the ion near-resonant with ω0, it applies the Hamil-

tonian Hlaser = −d̂ · E, where E is the applied electric field at the ion (location x̂), and

d̂ is the dipole operator. For our 171Yb+ system, we couple |F = 0,mF = 0⟩ (|0⟩) and

|F = 1,mF = 0⟩ (|1⟩) using correct polarization, so Hlaser becomes Ω(σ+ + σ−).

H = H0 +Hlaser =
1

2
ℏω0σ̂z + ℏωm(a†a+

1

2
) + Ω(σ+ + σ−) (3.13)

37Note that the commutation of the phonon mode raising/lowering operators is
[
a†m, an

]
= δnm, i.e. the

difference in frequency between phonon modes n,m.

84

When we transform into the interaction frame and apply the Rotating Wave Ap-

proximation (RWA), we obtain the interaction Hamiltonian HI in Eq. (3.9).

When we substitute Eq. (3.11) into Eq. (3.9), perform a Taylor expansion and drop

all except the 0th and 1st order terms, the Hamiltonian simplifies to:

H =
N∑
i=1

Ωi

2
σi+e

i(δkX̄i−µit−δϕi)(1 + i
N∑
m=1

ηim
(
â†me

iωmt + âme
−iωmt

))
(3.14)

If we set the detuning µi to particular values where µi =
∑

m lmωm, we obtain the Hamil-

tonian for applying sidebands. There are a few important cases of these sidebands that we

will consider: µ = 0,±ωm

Carrier: µ = 0. In this case, the Hamiltonian reduces to

Hcarrier =
ℏΩnn

2

(
σ̂+e

iϕ + σ̂−e
−iϕ) (3.15)

which is a spin-only transition, i.e. it does not change the phonon state at all, and is called

the carrier transition. This rotates between the states |↓⟩ |n⟩ ↔ |↑⟩ |n⟩, for some phonon

state n. This transition is used for the |0⟩ ↔ |1⟩ transition.

Blue/Upper Sideband: µ = +ωm. This Hamiltonian simplifies to:

HBSB =
ℏΩn+1,n

2

(
â†σ̂+e

iϕ + âσ̂−e
−iϕ) (3.16)

This transition adds a single motional quanta when flipping the spin, transitioning (flop-

ping) between |↓⟩ |n⟩ ↔ |↑⟩ |n+ 1⟩.

85

Red/Lower Sideband: µ = +ωm. This Hamiltonian simplifies to:

HRSB =
ℏΩn−1,n

2

(
âσ̂+e

iϕ + â†σ̂−e
−iϕ) (3.17)

This transition removes a single motional quanta when flipping the spin, transitioning

(flopping) between |↓⟩ |n⟩ ↔ |↑⟩ |n− 1⟩. 38

3.7.1.3 Ion Spin-Dependent Force (Multi-Qubit Gates)

If both the red Eq. (3.17) and blue Eq. (3.16) Hamiltonians are applied to an ion chain

simultaneously, via bichromatic (two-frequency) beatnotes at frequencies ω0 ± µi sym-

metrically detuned from the carrier, it will apply a spin-dependent force that will excite

motion in the ion chain depending on the state of qubit(s). If the beatnotes are instead

asymmetrically detuned from the carrier (at frequencies ω0 + µi+, ω0 − µi−), then the

effective spin-dependent force frequency is µi =
µi++µi−

2
, which also creates a Stark shift

equivalent to µi+ − µi−. These two sidebands together create the following Hamiltonian:

H(t) =
1

2

∑
i,m

ηi,mΩiσ
i
θi

[
â†me

−i(δimt+ψi) + âme
i(δimt+ψi)

]
(3.18)

This introduces two phases: a spin phase θi that determines the angle (phase) of the

operator applied, and a motional phase ψi that only influences the phase of the optical

forces, not the spin-spin (inter-qubit) coupling.

For our system, we primarily operate using a “phase-sensitive” configuration that is

38This red transition is the one that is used when performing sub-Doppler cooling (i.e. sideband cooling),
because it is possible to selectively remove motional energy from the ion(s) by exciting only the red sideband
transition(s).

86

sensitive to both movement of the ion(s) and optical path length changes. In this phase-

sensitive scheme, the red and blue sidebands are applied through a beam with the same k

vector for both sidebands (“co-propagating”, i.e. the same laser beam). By contrast, the

phase-insensitive scheme, which is not sensitive to ion movement or optical path length

changes, requires that the sidebands propagate in different directions. 39

3.7.1.4 Driving Raman Gates

Referring to Fig. 3.3, note that the difference in energy between the |0⟩ level |F = 0,mF = 0⟩

and the |1⟩ level |F = 1,mF = 0⟩ is 12.642 812 118 466GHz (hereafter called fcarrier).

Thus, by driving the qubit with microwave RF signals at frequency fcarrier, transitions

between |0⟩ and |1⟩ can occur, as described in Section 3.7.1.2 and Eq. (3.15). The down-

side of these microwave gates is that it is difficult to individually address ions. One factor

is that the Lamb-Dicke parameter for microwave gates is very low, because the gradi-

ent of the microwave field (eikx) is only the small value ikx. Another factor is that the

wavelength of this microwave frequency is relatively long (λ = c
f
= 299 792 458m s−1

fcarrier
=

0.023 712 482 254 02m ≈ 24mm) compared to a typical ion chain length of < 70 µm for

a 15-ion chain.

An alternative solution is to use an off-resonant stimulated Raman transition [113],

which works by exciting the qubit using a pulsed 355 nm laser to off-resonantly couple to

both the 2P 1/2 and 2P 3/2 manifold states. 40 If this laser is being operated as a frequency

comb [125] with a difference between frequencies equal to the difference between the |0⟩
39The phase-insensitive configuration effectively moves the need for phase stability to the RF waveform

source. Having the ability to more-easily perform phase-insensitive gates was one reason why we were
interested in implementing the RFSoC-based RF waveform system, described in Chapter 5.

40This means that the excitation is partway between both of these atomic manifold states.

87

& |1⟩ (i.e. fcarrier), then the qubit will transition between the two states. This solution

has the benefit that laser beams can be designed to optically address very small areas with

high precision, which then allows addressing (i.e. targeting) individual ions, and thus

performing operations only on the ions which are being illuminated by the laser(s).

We have both microwave and Raman methods available, but have decided to only

use the microwave gate method for calibration and debugging purposes, where individual

ion addressing is less important. We cannot use microwave gates for gates that rely on mo-

tional sidebands (e.g. the Mølmer-Sørensen gate in Section 3.7.3), because microwaves

do not create enough force to adequately drive motional sidebands in our experiment.

3.7.2 Single-Qubit Operations

In the EURIQA Breadboard trapped ion quantum computer, our system is configured to

execute non-co-propagating Raman transitions. If the Raman transition is tuned to the

carrier frequency fcarrier (Eq. (3.15)), a direct single-qubit gate can be executed.

The general gate that the Raman transition can apply is a R(θ, ϕ) gate, which uses

a detuning δ = 0 for a carrier transition. The R(θ, ϕ) gate is defined by the following

unitary/rotation matrix:

R(θ, ϕ) =

 cos θ
2

−ie−iθ sin θ
2

−ieiϕ sin θ
2

cos θ
2

 (3.19)

This equation can be reduced to rotations about the X and Y axes:

88

Rx(θ) = R(θ, ϕ = 0) =

 cos θ
2

−i sin θ
2

−i sin θ
2

cos θ
2

 (3.20)

Ry(θ) = R(θ, ϕ =
π

2
) =

cos θ2 − sin θ
2

sin θ
2

cos θ
2

 (3.21)

Executing these gates functionally looks like playing sine waves at the correct fre-

quencies to drive a carrier Raman transition, by generating a frequency difference of

fcarrier between the global and individual Raman laser beams. We call the continuous

version of the Rx(θ) gate a Rabi pulse.

If the envelope of the sine waves is a square41, we can calculate the rotation as a

function of time t (i.e. the pulse duration), where tπ is the observed time that it takes to

complete a Rx(π) rotation (i.e. start in |0⟩ and transition to |1⟩). Note that we assume that

tπ is measured experimentally. We distinguish between tπ and t2π (i.e. the time to make

a full |0⟩ → |1⟩ → |0⟩ transition): typically, 2tπ should be equivalent t2π, though this

might not always be true due to experimental details.

To demonstrate how tπ influences gate rotation for a time-variable Rabi pulse, we

calculate the rotation angle as a function of t:

θ(t) =
πt

tπ
, (3.22)

41In reality, the envelopes for the RF drive for the individual and global beams will not precisely overlap,
due to differing delays on the different beam paths. For example, on our system we have observed that the
laser beam along the global path is delayed by 1.02 µs. This means that that RF drive for the global AOM
cell must be turned on 1.02 µs before the individual AOM drive to produce a square-envelope Rabi pulse.

89

then we substitute that into the Rx equation Eq. (3.20):

Rx(θ) = Rx

(
πt

tπ

)
=

 cos πt
2tπ

−i sin πt
2tπ

−i sin πt
2tπ

cos πt
2tπ

 = Rx(t, tπ) (3.23)

These equations assume fixed amplitudes for the Raman drive (thus electric field), which

is calibrated to obtain the tπ.

Other pulse shapes42 than square are possible in this scheme, but require a calibra-

tion factor t
tπsquare

to equate their duration (or enclosed phase) to the equivalent square

pulse. Other pulse shapes can be useful to avoid higher-frequency harmonic tones that

are unintentionally driven with certain pulse shapes [126]. For example, a square pulse

has many higher-order harmonics, which can be demonstrated by transforming a step

function into the Fourier domain. These higher-order harmonics can excite unintended

motional modes of the motional harmonic oscillator, causing a loss in fidelity.

We can calculate the duration calibration factor by realizing that the square Rabi

pulse (or single-qubitRx(θ) gate) actually accumulates θ as an integral of the accumulated

Rabi drive Ω(t). For a square pulse at a constant Rabi rate ω (i.e. constant amplitude), we

can calculate

θ(t) =

∫ t

0

ω dt = ωt (3.24)

If we use tπ as the desired rotation angle, then the above becomes θ(tπ) = ωtπ

42E.g. DRAG [126, 127, 128], Gaussian, or Hyperbolic-Tangent (tanh).

90

This can be generalized to an arbitrary function:

θ(t) =

∫ t

0

Ω(t) dt (3.25)

Using these equations, it is relatively simple to calculate a normalization factor for

an arbitrary pulse shape Ω(t) that you would like to execute:

θsquare(tπsquare) = θarb(t) (3.26)

ωtπsquare =

∫ t

0

Ω(t) dt (3.27)

and then solving for t
tπsquare

.

Finally, while the aboveR(θ, ϕ) is the basic gate that we can execute, we have found

that it is generally advantageous to use composite pulse sequences instead of direct R

gates. Composite pulse sequences, such as the SK1 sequence [129] or the BB1 sequence

[130], make a quantum gate somewhat insensitive to common errors or mis-calibrations,

at the cost of increased gate time. 43 We have demonstrated high-fidelity gates using SK1

pulses, with average infidelity 44 of 3.4(8)× 10−4 per Clifford, equivalent to an infidelity

of 1.8(3)× 10−4 per native single-qubit gate ([93, Section 5.3.3]).

So far we have addressed R(θ, ϕ) gates, which would be sufficient to produce

arbitrary-angle quantum states and (the single-qubit portion of) universal quantum com-

43The long coherence times of trapped ions compared to the duration of a gate such as Rx(π) make
composite pulse sequences very attractive. In this regime, the primary source of error is from executing a
gate, and not from the qubit just “idling”. Hence it makes sense to spend extra time to perform a higher
fidelity gate.

44Infidelity is defined as 1− F , where F is the fidelity.

91

putation. However, trapped ions can also implement a native virtual RZ gate by advancing

the phase of the drive frequency (i.e. applying a phase offset to a sine wave) [128]. The

advantage of a virtual RZ is that it does not require any time to execute and can be imple-

mented entirely in software, so it should be of extremely high fidelity. Therefore using a

virtual RZ gate is highly desirable for improving circuit fidelity. 45

3.7.3 Multi-Qubit Operations

Single-qubit operations alone are not sufficient for a useful universal quantum computer.

Multi-qubit gates must also be available. In a trapped ion quantum computer with long

chains, the primary way of performing a multi-qubit gate is:

1. Entangle qubits’ spin with the motion of the collective ion chain.

2. Accumulate phase in the motional modes of the ion chain.

3. Disentangle the qubits’ spin from the motion.

There are many ways of performing each of these steps, especially the accumulation

step, but the most common trapped ion multi-qubit gate schemes use some variant of the

above steps.

The de facto standard quantum gate today, and the primary one used on this exper-

iment, is the Mølmer-Sørensen gate [2, 1, 3, 131]. This gate is designed to perform well

even when the harmonic oscillator of the trap is noisy. 46

45Arbitrary-angle RZ gates also have the advantage that they can be combined with an Rx(
π
2) to produce

an arbitrary-angle gate (any SU(2) gate) [128].
46i.e. When there are high & unknown amounts of phonons in each of the motional modes of the trap.

92

x

y

171Yb+ Ion

Trap Potential

z

Figure 3.8: Axes of an ion in a harmonic trap. The x axis is the axis of the trap.
Vibration along the y (vertical) and z (out of page) axes is called the radial (transverse)
modes. A single ion trapped in this potential will have 3 motional modes, each with their
own energy and number of phonons.

Consider a single ion trapped in a harmonic trap, as in Fig. 3.8. This ion has three

principle axes that it can vibrate in: x, y, and z. If we extend this concept to a chain of N

qubits (Fig. 3.9), the overall chain will have 3N motional modes (one for each of the N

normal modes in each of the 3 dimensions).

We elect to perform gates using the radial modes [132, 68] (i.e. the modes that are

not along the trap axis), because:

• Higher Frequency Modes when compared to axial modes.

• Less subject to 1
f

noise by nature of being higher frequency. One effect of being less

subject to 1
f

noise is that the mode will heat (i.e. increase in average phonon popu-

lation) more slowly from sources with a 1
f

distribution, which are most background

noise sources.

• Addressing: Allows individual addressing using perpendicular laser beams, with

93

x

y

5× 171Yb+ Ions

Trap Potential

z

Figure 3.9: Five ions trapped in a quartic potential. Relative to Fig. 3.8, this image
has a total of five ions. With several ions, we elect to use a quartic (not harmonic) trapping
potential to approximately equally space the ions in the chain from each other. We also
use the term “chain” to describe a crystal of ≥ 2 ions that are trapped in a well. Having
a chain will break symmetry in an axis, so it now makes sense to add the concept of the
“trap axis”. In this frame, vibration along the x axis is said to be axial motion, and the
vibrational modes in that direction are called the axial modes. With multiple ions, each
additional ion will add one motional mode in each axis. Thus, a two-ion chain will have
a total of 6 modes; five ions will have a total of 15 modes. For a chain of ≥ 2 ions,
the axial mode will be the lowest-frequency mode, and generally subject to the highest
heating/number of phonons.

94

minimal optical crosstalk between ions.

• Cooling: these modes can be very effectively cooled using sideband cooling.

The Mølmer-Sørensen gate two-qubit gate unitary is sometimes called an XX, or a

RXX gate. This gate is defined as

XX(χ) =



cos(χ) 0 0 −i sin(χ)

0 cos(χ) −i sin(χ) 0

0 −i sin(χ) cos(χ) 0

−i sin(χ) 0 0 cos(χ)


, (3.28)

where the parameter χ is the angle of the XX gate rotation. 47 We can scale the gate angle

(to first-order) by varying the power (waveform amplitudes), which allows calibrating the

exact angle applied. Typical two-qubit gate times are ≤ 250 µs for fully-entangling gates

on a chain of 15 ions.

The gate time is a direct consequence of the ion mode frequencies used in the gate.

Intuitively, two-qubit Mølmer-Sørensen gates are driving all the ion chain modes simul-

taneously, which is causing each of them to make loops in phase space. 48 We can ignore

the modes that are far-detuned (not strongly driven) because they are making small loops

so any errors will be small, and choose a duration where the primary drive modes will

complete a full 2π rotation and return to zero.

The problem of designing gates to satisfy the scheme of an Mølmer-Sørensen gate

47χ is typically in the range −π
4 ≤ χ ≤ π

4 , because the gate unitary is fully-entangling at |χ| = π
4 .

48Phase space is effectively the axes of position (x) and momentum (p) of an ion for each of the harmonic
oscillator modes.

95

has been treated elsewhere, such as [133, Sec. 4.1] and [93]. With properly-designed &

-calibrated two-qubit gate waveforms, two-qubit Mølmer-Sørensen gate fidelity ≥ 98.5%

has been demonstrated on our experiment.

3.8 Experiment Cycle

Stepping back from details of how operations are performed on a quantum computer, it is

helpful to consider the overall sequence how a quantum circuit is executed on a trapped

ion quantum computer, shown in Fig. 3.10.

This sequence can be broken down into the following categories:

1. Pre-Experiment

2. State Preparation

3. Execution

4. Measurement

3.8.1 Pre-Experiment

To perform quantum operations an ion trap quantum computer, one must first ensure that

it does in fact contain trapped ions. On our system, where the vacuum chamber (and thus

the surrounding environment) is at room temperature (≈ 70 ◦F, or ≈ 21 ◦C), a single ion

will typically be trapped for a period of several days, while a chain of about 15 ions will

be trapped for a period of a little less than an hour. 49

49The lifetime of an ion chain is dependent on many different factors, including:

• Background pressure of the vacuum chamber. Higher pressure means more gas atoms are present,
and thus a higher incidence of collisions between the ion chain and the background gas atoms.
Assuming the other requirements below are met, the pressure will have the most direct impact on
chain lifetimes.

• Temperature of the background gas. Lower temperature is better because collisions are less energetic

96

Begin

|0⟩
Preparation

Execute
Circuit or

Experiment

Measure
Qubits

Record
Qubit
States

Figure 3.10: Diagram of a standard experiment cycle using trapped ion qubits. This
diagram is only the part of the cycle that interfaces with the ions directly. Other prepara-
tion, calibration, and analysis steps will need to be performed external to the experiment
runtime on the ions. Each loop iteration here is commonly referred to as a shot.

97

Once the correct number of ions are available, and the appropriate calibrations have

been performed [119], then the quantum computer is ready to execute a circuit. Once

the desired circuit or experiment is selected, the circuit must be processed to turn it into

a sequence of actions that can be executed on the quantum computer. This topic will be

discussed in more detail in Chapters 4 and 6.

3.8.2 State Preparation

After all of the sequence preparation has been performed, a quantum experiment begins by

preparing the qubit(s) in |0⟩. This was discussed in detail in Sections 3.6.2.1 and 3.6.2.2.

The following steps are executed in sequence (Fig. 3.11), which together take a

large percentage of the overall duration of a given shot.

Once the qubit(s) have been prepared in |0⟩, then it is time to perform operations

on them.

3.8.3 Experiment Execution

Executing a quantum circuit is conceptually very simple for most quantum computers.

Most quantum computers use a waveform system that pre-computes the actions that they

will execute during the pre-experiment phase (Section 3.8.1). Then the circuit execution

and thus give the chain less energy.

• RF Confining Fields: An RF potential is applied to trap the ions. Changes in this potential can cause
ion ejection.

• DC Voltages: The potential well that the ions are in can be reduced in height depending on the
voltage settings. A shallow trap depth can put the ions closer to being removed from the trap.

• Laser stability: To remain cold (i.e. low-energy), the ions must be continually cooled. If the cooling
laser frequency shifts so that it is no longer cooling, then it will actually heat the ions out of the trap.

98

Doppler Cooling (far-detuned)

Doppler Cooling (near-
detuned, “Second-Stage”)

Sideband Cooling

State |0⟩ Initialization

Figure 3.11: Sequence of Qubit State Initialization. These are the steps from Sec-
tion 3.6.2.2.

is just a matter of triggering the appropriate waveform/execution sequence to begin.

This model works well for the majority of algorithms that are being executed, but it

does not hold for sequences containing conditional gates, such as quantum error correc-

tion algorithms. To handle conditional execution of this form, tight coupling must exist

between collecting the quantum state and using that measurement to select the appropri-

ate gate(s). In our system, that requires sending the measurement result to the waveform

generator in real time as soon as possible after collecting the measurement result (see

Section 5.5.5).

99

3.8.4 State Measurement/Readout

Whether a quantum circuit includes conditional quantum gates or not, the state of all

qubits is measured at the end of every experiment. This was covered in more detail in

Section 3.6.3, and summarized in Fig. 3.12. In short, the qubits are illuminated with

resonant 369 nm light for the 2S1/2 |F = 1,mF = 0⟩ to 2P 1/2 transition, which causes the

ions to fluoresce and emit 369 nm photons only if the qubit is in |1⟩. Those photons are

collected with a high-NA lens, and routed to individual PMTs which output digital signals

when they detect a 369 nm photon. The total quantity of registered photons for each ion

is recorded, and a simple discriminator is applied to determine if the qubit is in |0⟩ or |1⟩

based on the number of photon counts collected. This information is then saved for later

processing.

100

Shine 369 nm light

Qubit in |1⟩?No Photons

Photons Emit-
ted to PMTs

Record # of
PMT counts

No

Yes

(no counts)

Figure 3.12: Sequence of Qubit State Readout.

101

Chapter 4: Control System Design

4.1 Motivation

In order to turn a set of quantum computing hardware into a functioning quantum com-

puter, all of the devices that are used in an experimental shot must be synchronized and

controlled together. This complexity generally varies depending on the type of qubit used.

Superconducting qubits will generally have simpler control systems in terms of number

of devices, because their qubits are persistent, so most of the control complexity becomes

driving the qubits using RF signals. Trapped ion control systems tend to be more complex

because there are more steps to prepare, execute, and measure qubits during an experi-

mental sequence.

Generally, the control system is responsible for (assuming a single linear sequence

with no partial measurement):

1. Ensuring that the qubits are in the system

2. Preparing the initial quantum state of the qubits

3. Performing operations on that quantum state

4. Measuring the state of all of the qubits

102

5. Recording measurements

6. Preparing for the next repetition (typically called a shot).

4.2 Quantum Computers as Embedded Systems

In the engineering world, control systems are typically the domain of embedded systems

& controls engineers. These engineers are responsible for sequencing many different

real-world input & output devices together, in order to produce some real-world output.

Examples of embedded systems can range from automated factory assembly lines to a

laundry washer.

Control of a quantum computer requires essentially a very high-precision embedded

system, which must track and control the state of both a distributed electronics control

system, as well as control over the qubits themselves.

4.2.1 Challenges of Quantum Embedded Systems

Designing a control system for a quantum computer has several requirements and chal-

lenges that are relatively unique, which makes the process a challenging & research-

worthy endeavor. Specifically, quantum computing control systems require:

• Cross-domain knowledge: typically electrical & mechanical engineering, physics,

& software engineering.

• Precision & High-frequency Analog signals: Quantum computers are extremely

sensitive to any Electromagnetic fields or noise, but especially to phase and ampli-

103

tude variations.

• Precise timing: 100 ns or finer precision, depending on the system. 1

• Synchronizing many digital & analog inputs/outputs.

• Repeatability: Gathering state statistics typically requires collecting many “shots”

of a single circuit, which assumes that the system has remained constant and drift-

free for the duration of the data collection

• Varying timescales: each of the following requires operating timescales ranging

from nanoseconds to hours or days: laser locks, optical coherence, lab HVAC drifts,

optics burning.

Though this entire requirement set of quantum computers are unique, a quantum

computer control system is qualitatively similar to radar systems, and digital CPUs. A

radar system, especially Active Electronically-Scanned Arrays (AESAs), requires precise

phase control across many different channels, as well as real-time control to avoid jammed

frequencies and to interpret the radar results in real time. Radar systems and quantum

computers share the similarity of being conceptually simple, but fiendishly complex in

practice. The theory of both types of systems is well-established, and can be taught at

the undergraduate level. However, bringing each system to a level of reliability & high-

performance where it is truly useful requires a significant engineering effort. That is not to

say that an academic quantum computer control system is necessarily simpler. Academic

quantum computer control systems have the further challenges of:

1Superconductor quantum computers have typical gate times of ≈ 60 ns[134], so timing resolution of
≤ 10 ns, and typically ≤ 5 ns, is highly desirable.

104

• Constrained Manpower: While well-funded commercial teams might have enough

people that certain people or even sub-groups can specialize in a particular problem,

academic groups are typically stretched thin, and each person must take responsi-

bility for several subcomponents.

• Complexity: The publishing-first nature of academia tends to discourage long-term

projects or usability improvements. Most academic projects tend to involve just a

handful of graduate students at most, and are limited in scope to what is needed for

the next incremental step or paper.

• Extensibility: Academic software must be able to be improved over time to adapt

to new requirements, but that extensibility requires tradeoffs over more-specialized

software, such as slower runtime, more development effort, etc.

• Heterogeneity: Academic labs typically consist of mix-and-match hardware, which

was designed over time to a constrained budget, by people people with varying

amounts of experience.

• Tight development cycles: Academic groups typically try to iterate quickly, and

want to just to do proof-of-concept. It takes a considerable amount of work to

bring a project from working in specific circumstances (e.g. 50% reliable, undocu-

mented, etc.) to working reliably 100% of the time.

• Communication: Academic labs are primarily composed of graduate students, who

will eventually leave after a period of ≈ 5 years. The new tools tend to be devel-

oped by junior graduate students, who are less experienced and have little need for

105

documenting design decisions, as well as little institutional incentive for such doc-

umentation. Projects tend to primarily be documented in graduate theses, but the

downside is that this is the only remaining reference once that person leaves, and

can be left in varying states of detail.

4.3 Comparing Existing Qubit Support System Requirements

The table in Table 4.1 lays out the different steps of an experiment (laid out in Section 3.8),

comparing the hardware that is required for superconducting vs trapped ion qubits.

Experiment Stage Trapped Ion Qubits Superconducting Qubits

Qubit “Loading”

Photoionization Laser
Trap Voltages,
Cooling Lasers

Trap RF

Dilution Refrigerator
Temperature Probe
Resistance Meter

Qubit Initialization
Cooling Lasers

RF Source (Sideband Cooling)
Pumping AOM

RF Source
DC Bias Lines

Quantum Operations
RF Source

Cooling Lasers
Trap Voltages

RF Source
RF Switches

State Readout Readout Lasers/AOMs
RF Source

Cryo Amplifiers
Mixers

Table 4.1: Comparison of Required Control Hardware for Trapped Ion & Super-
conducting Quantum Computers. This list is not meant to be exhaustive, but simply
indicative of the differing requirements between a leading-edge superconducting quantum
computer vs a similar quality trapped ion quantum computer.

106

4.4 Control System Realms

For the remainder of this chapter, we will primarily address control systems and the spe-

cific requirements for Trapped Ion Quantum Computers. When considering control of a

trapped ion quantum computer, it is important to understand the different timescales that

the control system needs to handle, which range in scale from order of days to order of

nanoseconds. For the purposes of this discussion, one “experiment” denotes executing

one quantum circuit with varying parameters, repeating the sequence for each parameter

some number of times (typically called “shots” or “repetitions”).

We can divide the control system roughly according to these categories, which are

also shown in Fig. 4.1:

• Daily Control: These are items that have timescales of hours to days.

• Experiment-Time Control: These items need to be controlled on the scale of an

“experiment”, which currently typically takes place over a period of seconds to

minutes.

• Coherent Control: These are the quantum operations that happen during a quantum

“experiment”. Because any error in these operations directly affects the unitary

that is executed, this is typically the most strict and precise segment of the entire

experimental sequence.

Note that this framework completely neglects the important discussion of designing

the physical quantum system itself. While that is not a primary focus of this thesis, it is

discussed more in Chapter 3, and more thoroughly in a wealth of other resources [93,

107

1 ns 1 us 1 ms 1 s 1 min 1 hr 1 day 1 week

DailyExperimentCoherent

Figure 4.1: Diagram of the various experimental timescales and their corresponding
control realm. The gap between experiment and daily is filled in our experiment via con-
trol software, which manages issues at this timescale via e.g. ensuring that the appropriate
number of ions is present.

67, 113, 133, 135, 114]. For the remainder of this chapter, let us assume that there is a

pre-built trapped ion quantum computer that is effectively a quantum black box, and a

control system is needed to operate it.

4.5 Ion Trap DAC Control

One of the advantages of a surface electrode trap is the ability to have minute control over

the trapping potential that a chain of ions collectively experience. With enough electrodes,

you can have fine control over voltage potentials in most directions of the ion chain, and

thus have fine control over the various vibrational frequencies (modes) of the ion chain.

A surface electrode trap also generally has separate zones for loading and performing

quantum operations.2

However, it is not enough to simply have a surface electrode ion trap (often short-

ened to surface trap) with many electrodes. There must also be a method for controlling

those electrodes. This process is essentially applying DC voltages between the trap elec-

2Zone separation is primarily due to the need for high optical access & low noise where quantum op-
erations are performed, which allows tight focusing of laser beams for individual control. This separation
also allows for maintaining a mostly pristine trap surface near the quantum region. Loading ions is a dirty
process in that it involves spewing a beam of atoms towards the surface of the trap, some of which will
attach to the surface and can become charged, which applies undesired potentials to the ions. This effect
can be minimized by spatially separating the “dirty” loading zone from the “clean” so-called quantum zone.

108

trode & the trap ground plane.3

This electrode control scheme must not just output static DC voltages, but it must

be able to change in timescales ranging from real-time to every few minutes, to enable:

• Voltage Calibration: the DC voltages must be periodically updated to adjust for

drifts in the ambient electric fields.4

• Ion Shuttling, Merging & Swapping: As will be described in Section 8.2, a com-

mon operation for an ion trap quantum computer is to move a chain of ions around

as a single unit, or to split that chain into sub-sections and then move the smaller

chain/ions independently. Performing any of these operations on an ion chain typi-

cally involves outputting a pre-computed sequence of voltages across all electrodes,

and then stepping through that sequence to move (or reshape, depending on the op-

eration) voltage potential wells from physical location (configuration) A to B. For

simplicity, we will collectively call these shuttling operations, because the way that

they are processed by stepping through voltage outputs is identical, only differing

in the precise voltages needed to perform each type of operation.

As with the majority of the control system, there is a design trade-off in the control-

lability of the trap DAC. In this case, we must trade-off number of electrodes controlled,

response time, real-time control, precise control and memory space. For our particular

application, we need to drive the ≈ 100 DC electrodes of the Sandia HOA with ≤ |10V|,

updating every few tens of µs, and be able to store enough voltage outputs to perform all

3In the case of our Sandia HOA, the recommended voltage range to apply to DC electrodes is ±10V.
Applying voltages outside of this range risks damage to the ion trap.

4We believe these are primarily due to photoelectric effects from our high-powered 355 nm laser.

109

101 102 103 104 105 106

−80

−60

−40

−20

0

Frequency (Hz)

Fi
lte

rg
ai

n
(d
B

)
Simulated Frequency Response of EURIQA “1 kHz” Trap DAC Filters

Sim. Response
−3 dB point

Figure 4.2: Simulated Frequency Response of EURIQA ≈ 1 kHz Filter. This is a
straightforward 5th-order lowpass RC filter.

the desired shuttling operations (≈ 4MiB). We use a ≈ 1 kHz 5th-order low-pass RC

filter on the output of each channel of our custom 112-channel DAC, which limits both

the noise on the electrodes and the rate at which the electrode voltages can change. The

simulated frequency response of this filter can be seen in Fig. 4.2.

4.6 Digital Control System

To execute the entire experiment cycle that was described in Section 3.8, we need a de-

vice to sequence all the output events, collect input events, and record of the information.

We use the ARTIQ (Advanced Real-Time Infrastructure for Quantum physics) ecosystem

[25, 136] for this function. ARTIQ is specifically designed for quantum computing ap-

plications, and combines the flexibility of Python with real-time control over hardware

devices. ARTIQ is designed around executing experiments, which go through four stages

110

sequentially: build(), prepare(), run(), analyze().

ARTIQ is effectively an embedded system network with a few primary components,

which is described below and visualized in Fig. 4.3.:

• “Host” or “Master” PC: This is responsible for the majority of the computational

load, and acts as a control server for the rest of the ARTIQ ecosystem. All experi-

ments begin on this device.

• Core device: This is an FPGA (such as the Kasli FPGA carrier board [137]), which

runs a real-time program. The ARTIQ FPGA is comprised of 3 key components: a

real-time processor5, a network processor (to offload non-real-time operations from

the real-time core), and FPGA gateware blocks for communicating with external

devices. 6 Example external devices include DDS’s, digital I/O signals, ADC/-

DACs, and any other device that has a digital interface. 7 This system allows

queueing input/output events from the real-time CPU, which are then executed at
5The CPU is based on the OpenRISC design [138], though recent work has been put towards using

built-in Arm processors on ZynQ FPGA boards.
6 Many embedded systems do not operate natively in meaningful SI units (e.g. Hertz, Volts, etc).

Instead, they operate in binary units which roughly correspond to a physical unit. Following the convention
laid out in ARTIQ, we call these machine units (mu). Machine units must be used because digital computers
cannot represent arbitrarily-precise numbers, and instead must approximate it as close as possible. For
example, it would take an infinite number of bits to represent π, so instead π will typically be rounded to
≈ 32 bit of precision, depending on the exact floating point scheme [139]. Floating-point calculations are
typically slow and expensive to execute on a lightweight real-time embedded device, so these are generally
converted into a fixed-point binary number. The range of this binary number should precisely match the
capability of the hardware device. For example, consider a DDS IC such as the Analog Devices AD9910.
The datasheet [140] gives the equation for the output frequency as fout =

(
FTW
232

)
fSY SCLK , where FTW

(Frequency Tuning Word) is the machine units representation of the frequency (a 32 bit register), and
fSY SCLK is the input clock to the AD9910. When FTW = 1, the right side of the equation is equivalent
to the frequency resolution. This equation can be slightly extended and generalized for an arbitrary output
range for mu calculations:

out =
(nmu

2nbits
∗ (outmax − outmin)

)
+ outmin (4.1)

where nmu is the number in machine units, nbits is the number of bits of precision, and outmin, outmax

are the minimum and maximum output values, respectively.
7If you are able to write drivers and gateware blocks for them.

111

the appropriate timestamp via the FPGA blocks.

• Auxiliary Core device (optional): The Kasli system allows for digital I/O expansion

over a custom ARTIQ protocol called DRTIO (Distributed Real-Time Input/Out-

put).

• Client PC: The ARTIQ interface on the Host PC is available remotely over network

protocols (IP). This lets multiple users at multiple PCs execute ARTIQ experiments

interleaved.

• Laboratory Instruments: More complex quantum computers require knowledge of

and control of more laboratory devices to achieve high fidelity and complex op-

erations (such as shuttling). These instruments can be connected into an ARTIQ

setup via any protocol available via Python (e.g. IP, VISA, USB, etc.) for software

control, or real-time digital protocols such as SPI/I2C depending on the instrument

and control needs.

4.7 ARTIQ Experiment Design

ARTIQ provides a very barebones interface out-of-the-box, leaving it to users to design

and implement their own experiment framework. ARTIQ does provide some standard

features, such as:

1. Core Device interface: ARTIQ can compile and run your Python programs on the

FPGA core device.

112

ARTIQ
Master Server

ARTIQ Client
Can be

same PC as
Master Server

ARTIQ
Core FPGA

ARTIQ
Secondary
FPGA (via

DRTIO)

Real-
Time Lab
Instrument

Non-Real-
Time Lab
Instrument

Figure 4.3: Example ARTIQ Laboratory network. Connections between devices
indicate that direct communication can be made between the two devices over some pro-
tocol (e.g. Ethernet, or a real-time protocol like SPI) during the course of an experiment.
Note the direction of (typical) flow is denoted by the arrowhead direction. Practically, the
ARTIQ Core FPGA can communicate bidirectionally with any real-time device, but prac-
tically the Core FPGA will act as the primary controller/sequencer for any other devices
during an experiment.

2. Dataset values: ARTIQ can save/load values from storage, which allows persistent

values that are shared across experiments.

3. Network interfaces: The ability to interface with distributed Python programs,

which are accessible via different IP addresses and ports.

4. Device Driver library: for some subset of hardware.

However, this capability falls far short of meeting every experiments’ needs. Par-

ticularly, it is missing the crucial capabilities to interface with all the devices in a given

hardware setup, as well as the higher-level software interfaces for commanding those de-

vices in a logical way. For example, the DAC described in Section 4.5 can be commanded

to output a specific voltage for each output channel. But that level of control is too fine-

grained, and can hinder a conceptual understanding of what the overall purpose is. A

113

more useful command would be something of the sort "Shuttle ion from A to B", which is

then decomposed into a sequence of voltage commands. However, even if a driver for the

Sandia DAC was provided in ARTIQ, this high-level interface is left to users to define,

architect, and implement.

Some research groups have developed frameworks such as DAX [141, 142], but

these did not exist when this requirement was discovered. Our infrastructure ended up

being developed somewhat ad-hoc8, but included writing drivers for the wide range of

hardware that we had available in the laboratory, including:

• Power supply for the magnetic field electromagnetic coils and the Yb thermal oven.

• Sandia 100-channel DAC. This includes both real-time control and high-level con-

trol for commanding shuttle operations between different voltage configurations.

• 8-channel DAC to control positioning piezos.

• Waveform generators: both DDSs, AWGs, and the RFSoC (Chapter 5).

Further, we also developed the higher-level interfaces to incorporate each of these

devices into our experiment, and calibration value infrastructure that could be easily ex-

tended and incorporated in new routines. For the high-level interfaces, we generally or-

ganized devices by functionality instead of physical device. For instance, a high-level

interface for performing Doppler cooling would only expose methods such as the ability

to turn it on for a duration, or to change the laser frequencies used for the cooling. Un-

8The design and implementation of these drivers was further complicated by a set of concerns that
included: physical location, timing concerns, software driver compatibility issues (e.g. Windows/Linux
low-level drivers), limited development time, etc.

114

der the hood, it would then execute the necessary commands to the required devices to

execute the high-level goal.

We were successfully able to define, implement, and demonstrate these interfaces

and drivers working in our laboratory environment. Altogether, we were able to demon-

strate a working quantum computer control stack that was able to convert quantum circuits

and calibration routines into the control signals for running a quantum computer.

115

Chapter 5: RFSoC-based Coherent Control System

This chapter will describe the implementation of a waveform generator for ion trap quan-

tum gates on a Xilinx RFSoC. An RFSoC is a system-on-a-chip (SOC) combining an Arm

CPU, a Xilinx FPGA, and RF ADC/DACs for outputting and sampling radio-frequency

signals.

5.1 Need for Flexible Waveform Control

As described in Section 3.7, an RF source is needed to perform qubit operations for

trapped ion quantum computers. While there are a variety of waveform generation so-

lutions, many of the Commercial Off-the-Shelf (COTS) solutions are not well-suited for

use in quantum computing. Further, even the relevant COTS solutions will typically need

some modifications or upgrades to meet the requirements of the range of quantum exper-

iments that we are interested in performing.

The RF system to drive our quantum gates must be able to meet our research needs.

These research needs change over time, especially because the expected lifespan of these

systems is on the order of ten years. The RF system is being constructed for an academic

setting where requirements are based on the scientific avenue that we are currently pur-

suing, which will tend to change on the order of one year. Thus, we need a system that

116

is flexible & future-proof, while achieving the high performance that we need to demon-

strate many of these scientific goals.

Despite the rigorous quality & flexibility demands that academia is placing on this

system, it must still be designed for end-users, so programmability and clear operation

are important. For many of the quantum applications we are considering, the quantum

computer must be capable of operating at high-fidelity (>= 98%) for hundreds of circuits.

It must not only be capable of handling this many circuits, but must also quickly generate

the appropriate sequence of waveforms for each circuit & give useful feedback if there is

something wrong.

5.2 Waveform Generation Trade-offs

When we were exploring some waveform generator alternatives, certain solutions would

generate the waveforms in about 90 seconds, but the actual data collection would only

take about 5 seconds, which is simply inefficient and frustrating to use. It should be

obvious that a solution where it takes approximately 10× longer to compute a sequence

than it takes to execute it has plenty of room for optimization. This chapter will explore

some of the design trade-offs behind different solutions to this problem, and the approach

that we have taken.

5.2.1 Waveform Generation Requirements

At a technical level, designing an RF control system that works for quantum control

systems has a few challenging, and sometimes conflicting, requirements:

117

• Phase control: phase errors on an output that drives the qubits will cause direct

qubit decoherence, which leads to a decrease in fidelity.

• Duration Range: A wide range of experiment and waveform durations must be

supported. For example, the pulses to execute a Ramsey sequence [18] to measure

decoherence rates will last approximately the duration of the qubit’s T ∗
2 time, which

is greater than 1 s for 171Yb+ [90]. On the other hand, the RF system must also be

capable of outputting pulses of short durations, for example less than 500 ns for

scanning the duration of a full-power Rabi pulse. 1 Thus, pulses with durations

ranging from approximately [1 ns, 10 s] must be supported by the RF system.

• Pulse Shaping: For various reasons, primarily due to avoiding harmonics and un-

wanted frequency interference, it is generally preferable to avoid square-shaped

pulses when driving qubits. There are a variety of pulse-shaping schemes, but

in general high-fidelity quantum operations require shaping the up-/down-ramp of

pulse output.

• Fast Preparation: The time to generate and upload the waveform sequence must be

reasonably short. Ideally, this would be the same or less than other experimental

setup delays. In practice, this means that the desired compile and upload time for

an experiment’s RF waveforms is on the order of ≤ 5 s.

• Repeatability: In a typical experiment, the same sequence will be played many

times, once per shot. This sequence should be the same every single time, and not

1At full output amplitude, we produce Rabi flops between |0⟩ & |1⟩ with a 2π-period of ≈ 600 ns.
Superconducting qubits typically see pi periods of ≈ 20 ns [143].

118

require re-generating the output sequence every single shot.

• Waveform Feedback: The waveforms that are actually output by the RF subsystem

will need to vary over time. These reasons include but are not limited to crosstalk,

laser frequency drift (technically repetition rate of the laser [144], which we correct

in a process that we call “frequency feedforward”), amplitude (due to the chain of

trapped ions heating up over time [120]), and other potential effects that have not

been fully characterized.

• Clear Programming Interface: While not completely necessary, having a clear,

well-documented, and easy-to-use programming interface for controlling the RF

output & waveforms is highly desirable for clarifying exactly what is being output

at what time by the RF subsystem.

• Conditional Support: Interesting quantum algorithms that are being considered

today typically require quantum measurements in the middle of a circuit, which

should then influence the rest of the circuit [43, 39]. To demonstrate these algo-

rithms, the experimental setup must have both software and hardware support for

inserting conditional logic into a previously-linear sequence.

As with any engineering problem, several of these requirements tend to conflict with

each other. It is difficult to have an extremely long pulse, yet very fine-grained control

over it.

There are different hardware implementations of a waveform generator, each of

which has different strengths and weaknesses. These are, in order of increasing complex-

ity:

119

Waveform
Generator Advantages Disadvantages

Static RF Stable, good phase coherence, infi-
nite duration

No real-time control, modulation is
difficult.

DDS Stable, good phase coherence, infi-
nite duration

Slow updates (≈ 200 ns)

AWG Precise control Limited duration sequences (≈
10ms) at high timing resolution,
long upload time, limited condi-
tional sequencing

Custom Meet exact needs Development time, complexity

Table 5.1: Comparison of different waveform generation hardware implementations.

• Static RF Source

• Direct Digital Synthesizer (DDS)

• Arbitrary Waveform Generator (AWG)

• Custom Solution

Balancing these trade-offs, as described in Table 5.1, led us to select a custom waveform

generator for our coherent waveform control.

5.3 RFSoC System Description

To implement the custom waveform generator that became the core of our coherent RF

control system, we first had to settle on a hardware platform. We selected the Xilinx

RFSoC FPGA platform as the basis for this system.

In collaboration with a team at Sandia National Laboratory (SNL), we defined the

requirements for a custom waveform generation solution. They then implemented the

necessary embedded software (FPGA logic & CPU application code), which they call

120

Octet. Octet generates waveforms that are output by a combination of the RFSoC’s FPGA

logic & the RF DACs. For simplicity, we will refer to the software that runs on the

embedded RFSoC CPU as “firmware,” and the software that describes the RFSoC FPGA

configuration as “gateware.” 2

5.4 RFSoC Physical Hardware

There can be many different physical sets of hardware that implement Octet, because

Octet is a configuration of an FPGA chip3, specifically the Xilinx RFSoC. This FPGA

chip can be mounted in a variety of enclosures or form factors, just as a CPU can be

packaged in laptops from a variety of vendors. We have demonstrated Octet working

on both Xilinx evaluation boards (EK-U1-ZCU111-G, henceforth shortened to ZCU111)

& Pentek 5950 platforms. Table 5.2 contains a summary of the differences between the

two platforms. 4 Ultimately, the primary differences between the two platforms are price

(ZCU111 is cheaper) & better support for multi-board output synchronization (Pentek

offers a better solution).

Let us consider the major features (Section 5.5), and then break down the RFSoC

capabilities as a set of inputs and outputs (Section 5.6).

2 The Sandia Octet software is provided under limited access licenses to our group, under a Government
Use License. To comply with licensing and export control restrictions, the EURIQA team only has access
to pre-compiled binaries and does not have access to the source code for the Octet software. Thus much of
this is a reconstruction based on testing, informal discussions, public APIs, and public papers [145]. For
this same reason, we are not able to correct any software bugs that we might encounter.

3In the FPGA world, this is usually called an IP (Intellectual Property) block.
4It is important to note that the Octet gateware will work on any RFSoC sharing the same FPGA Inte-

grated Circuit (IC) chip, but there must be a translation layer defined for it work properly in a given system.
This translation layer is effectively responsible for standardizing the peripherals (clock, input/output pins,
etc) that are available on the platform and exposing the required ones to Octet. For example, the Xilinx
ZCU111 has two FMC connectors available on the evaluation board, but the more-compact Pentek 5950
does not expand all of these pins out. So a mapping is needed from the input signals that the Octet gateware
expects to the available I/O pins available on e.g. the Pentek 5950 platform.

121

System Pro Con

Xilinx ZCU111 Simple, cheap, fully sup-
ported by Octet

Needs enclosure designed
& built, requires 12.8MHz
stable clock source

Pentek 5950 COTS, corporate support
offered, small form fac-
tor, phase synchronization
across 8-channel RFSoCs

Cost, noisy chassis fans,
lead times

Table 5.2: Comparison of selected Xilinx RFSoC Platforms. The Pentek 5950 & the
Xilinx ZCU111 were selected as our primary options for system development. They are
very different systems aimed at very different markets. The choice between these two
is primarily between cost and support. The Xilinx ZCU111 is better supported by the
Octet developers at Sandia National Laboratories, but the evaluation board itself is very
bare-bones and is not meant for direct incorporation into finished systems. As such, it
requires users to add on many features required to function in a lab, such as an external
clock source at a precise frequency, and an enclosure to prevent accidental issues, such as
shorts, with the sensitive electronics. Thus, a significant amount of effort is required to
design, procure, construct, and test a full system that supports the ZCU111. The Pentek
5950 system, which is designed for commercial and military usage, has solved all the
previously-stated deficiencies with the ZCU111. This convenience comes at a monetary
cost, as a roughly equivalent Pentek system will cost ≈ 3× as much as an equivalent 32-
channel ZCU111 system. One major feature that the Pentek system supplies is the ability
to synchronize the clocks of different RFSoC FPGAs to approximately the picosecond
level.

122

Item Name Description Quantity

Xilinx ZCU111 RFSoC FPGA Waveform generator 1
AVNet AES-LPA-502-G RF Differential Breakout. Route

RF signals from the RFSoC high-
density connectors to SMA connec-
tors

1

Minicircuits RF Baluns Convert balanced (double-ended)
RF inputs/outputs to single-ended at
50Ω impedance

9

TI DS90LV047-48AEVM Convert CMOS DIO to/from single-
ended (external) to differential (for
the ZCU111)

1

Xilinx FMC XM105 Debug Board Breakout FPGA DIO signals 1
Bulkhead Passthroughs (Various) Move signals from the outside of an

enclosure to the interior
>10

Table 5.3: Summary of BOM for Custom ZCU111 Enclosure for use with Octet. I
custom-designed this enclosure and accompanying BOM for testing and demonstrating
Octet software running on the ZCU111 FPGA. A 32-channel system will have 4 copies
of the above enclosure (8 output channels per ZCU111 RFSoC). This enclosure allows
integrating an RFSoC into a server rack. It also allows easily expanding the number of
RFSoC’s in use as needs dictate.

123

5.5 RFSoC Feature Breakdown

The role of the RFSoC system is to generate waveforms in real-time to drive quantum

gates on a set of qubits. The RFSoC achieves this by using digital logic to generate sine

wave-like waveforms. Each RFSoC output channel5 using Octet supports two simulta-

neous output tones,6 each of which have several parameters that can be modulated using

cubic splines. These parameters are frequency, amplitude, phase, and frequency, which

are summarized in Table 5.4. We will call these the “spline engines”. If we consider a

single RFSoC output pulse as a function of time, it can be described as (where dt is the

duration of the current pulse): 7 [145].

outtone(dt) = amplitude(dt) ∗ sin (frequency(dt) ∗ 2π ∗ dt+ phase(dt) + frame)

(5.1)

out(dt) =
1∑

n=0

outn(dt) (5.2)

The RFSoC has two operating modes:

• Static: This mode will output constant tones (in amplitude, frequency, and phase)

until it is disabled.

• Pulsed: This mode allows queueing up a sequence of pulses, which can arbitrarily

modulate each of the output tone parameter spline engines. This is described in

5i.e. one SMA cable
6We define a tone as a single parameterizable sinusoid wave, as described in Eq. (5.1)
7Eq. (5.1) neglects some advanced features such as crosstalk, which will be described in Section 5.5.3

124

Parameter
Name

Description Range Resolution

Frequency Tone’s Output
Frequency

−409.6 to 409.6MHz 745.058 µHz (40 bit)

Amplitude Tone’s Ampli-
tude Envelope
(Arbitrary
units)

−1.0 to 1.0 (arb.) 6.1035× 10−5 (16 bit)

Phase Tone’s Output
Phase

0 to 2π rad 5.7145× 10−12 rad(40 bit)

Frame Rota-
tion

Accumulated
Frame Rota-
tion (“RZ”).
Continuously
accumulated
until explicitly
cleared.

0 to 2π rad 5.7145× 10−12 rad (40 bit)

Table 5.4: RFSoC Pulse Parameters. These are the parameters that can be controlled
on a given RFSoC output tone for a given channel. Note that the frame rotation is shared
between both tones of a single output channel, and can be applied to either/both of them
simultaneously. See [145] for more details.

125

detail in Section 5.5.2.

In either operating mode, the RFSoC will receive commands over Ethernet, specif-

ically via the Go Remote Procedure Call (GRPC) protocol. Each command is processed

by a server running on the RFSoC’s ARM CPU (called rfcontrold). rfcontrold

will then send the appropriate control signals into the FPGA fabric, e.g. setting a register

value, which will then affect the current or future output of that RFSoC.

A standard RFSoC has 8 RF output channels. For a system like the EURIQA Bread-

board, which has individual control over up to 32 ions via a 32-channel AOM, there must

be 4 parallel RFSoCs to drive all ions individually. 8 Fortunately, the RFSoC’s can easily

be connected and programmed in parallel. Each RFSoC requires:

• Ethernet Connection for receiving commands.

• Synchronized clock: this ensures that all RFSoC boards will output the same fre-

quency without any system-specific drifts. 9

• Trigger: to command the RFSoC to begin outputting the desired pulse sequence.

• Feedforward signal (optional): This is described in Section 5.5.1. Depending on

specific implementations the feedforward signal might only be routed to a single

board or to every board, depending on whether feedforward is applied to the global

Raman beam or the individual Raman beams.
84 RFSoCs can only drive 31 (not 32) ions, because one of the 32 channels is reserved for a globally-

addressing channel. This could potentially be mitigated with a fifth RFSoC if desired.
9For ZCU111 boards running Octet, this must be a 12.8MHz clock, which should be referenced to a

common experiment clock source such as a 10MHz Rb clock. Pentek systems include a clock distribution
mechanism, the Pentek 5903, which takes a 10MHz to 100MHz input clock and generates the required
RFSoC clock frequencies.

126

5.5.1 RFSoC Frequency Feedforward

The 355 nm Raman qubit laser that drives our qubit transition is known to exhibit noise

in its pulse repetition rate [144]. If this noise was allowed to propagate through the sys-

tem, it would lead to qubit decoherence. Conceptually, for short timescales ≈ 1 s the

ion’s transition frequency will remain stable. However, remember that the qubit transi-

tion is excited by a combination of a global laser beam, an individual laser beam, and the

RFdrive→ Amplifier → AOM signal chain that modules each of these beams. Thus,

a change in frequency on both the individual and global laser beam10 can be corrected by

modulating the frequency of the RF drive for either the global or individual beam in the

opposite direction [113, Section 2.3.1]. 11

In our system, where we are primarily performing phase-sensitive gates (as opposed

to phase-insensitive [146]), we chose to apply the feedforward signal to the global Raman

beam RF signal, and not the individual Raman RF signals. This has the side benefit of

only requiring the feedforward signal to be input into a single RFSoC which drives the

global beam RF signal, instead of every single RFSoC in the system.

This feature works by inputting an RF signal into an input channel of an RFSoC

which is running the Octet software. The RF signal should be the result of mixing a con-

stant RF signal with a signal that represents the error in the Raman beam repetition rate, so

ffeedforward error@IF = fIF + ffeedforward error (where IF is an arbitrary intermediate fre-

10The laser frequency should shift symmetrically because both the individual and global beam are differ-
ent paths for the same beam, which is split upstream of the AOMs.

11This is technically a frequency feedforward system, because the feedback loop is not closed by mea-
suring the final output frequency. However, the Octet code does not specify the source of the error signal,
thus it calls it a “frequency feedback” feature. We will elect to use “frequency feedforward” for clarity.

127

quency that users select). We use 140MHz for our IF. The RFSoCs include an RF ADC,

which is used to sample the incoming signal ffeedforward error@IF . This signal is then

mixed against internal oscillators operating at the IF to generate an error signal, which

drives a PID (Proportional-Integral-Derivative) lock. This lock tracks the frequency error

from the IF, and then adds the error frequency to the output frequency for the RF output

tone(s).

5.5.2 RFSoC Pulse Control

Executing gates on the EURIQA Breadboard quantum computer requires arbitrary and

repeatable control of RF waveforms. Many quantum gate methods use amplitude, fre-

quency, or phase modulation (AM, FM, PM), or some simultaneous combination of these

[147, 148, 149]. Thus, static waveform signals, or ones that cannot be modulated at the

desired rate, are impractical for the EURIQA Breadboard.

To meet this need, the Octet RFSoC gateware includes cubic spline engines for each

of the amplitude, frequency, and phase parameters, each of which can be programmed

independently with a duration and envelope (time-varying value). An arbitrary waveform

can then (in most cases) be described as a combination of these parameters changing over

time. The cubic spline engines, based on [150], will each output a signal:

out(t) = c0 + c1t+ c2t
2 + c3t

3 (5.3)

where cn are the n-th order spline coefficients of the parameter. We will use CubicSpline(

128

c0 = c0, c1 = c1, c2 = c2, c3 = c3) to denote future cubic spline coefficients. 12

Let us consider a simple triangle wave amplitude waveform sequence on a sin-

gle tone, played for a total of 20 µs, the amplitude component of which is illustrated in

Fig. 5.1. A triangle wave is simply a positively-sloped ramp followed by a negative slope.

Considering only the amplitude spline, this waveform then looks like the following com-

mands to the amplitude spline engine:

1. Ramp up: For 10 µs, increase from 0.0 → 1.0 (arbitrary units). The equivalent

cubic spline is CubicSpline(c0 = 0.0, c1 = 1.0, c2 = 0.0, c3 = 0.0).

2. Ramp down: For 10 µs, decrease from 1.0 → 0.0, which is equivalent to CubicSpline(

c0 = 1.0, c1 = −1.0, c2 = 0.0, c3 = 0.0).

Knowing that each cubic spline command to the RFSoC is represented with 256 bit

(32B), this entire amplitude ramp sequence can be described in only 512 bit. In this

formalism, because the duration of the pulse is not directly a part of the cubic spline, to

extend this waveform to 10 s would require the same number of command bits, as the

same spline word can be played for a varying duration simply by changing the duration

field of the command word. 13

12The actual RFSoC hardware uses PDQ Splines, instead of native cubic splines. PDQ splines [151, 150]
are nearly equivalent to cubic splines, but they are simpler to compute using integer-only arithmetic on
embedded devices such as an FPGA, instead of needing to perform a slow floating-point multiplication step
for each time unit.

13This is very different than AWG-based RF waveform generators. Most AWG programming sequences
require specifying the exact output amplitude at each time point (sample or Sa). This means that a wave-
form sequence will require storage nbits = resolution(bitSa)∗duration(Sa). Assuming an AWG with 1 GSa

s

output (which outputs one sample per nanosecond), and 16 bit resolution (16 bitSa−1), 1 s of output will re-
quire 2GB of data. This quantity will scale with the duration of the waveform, in contrast with the RFSoC-
based approach using Octet. 2GB for 1 s of output is significantly larger than the 64B that an RFSoC
running Octet requires. In reality, because amplitude, frequency, phase, and frame rotation will typically be
specified for both tones, and for each channel on the RFSoC, the example triangle waveform might actually
require 512B on the Octet. However, this is still much more efficient encoding than an AWG: if the triangle

129

0 0.5 1 1.5 2

·10−5

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

pl
itu

de
(a

rb
.)

Triangle Wave

Figure 5.1: Example Triangle Wave Amplitude. The ramp-up can be described by
A(t) = t, or CubicSpline(c0 = 0.0, c1 = 1.0, c2 = 0.0, c3 = 0.0). The ramp-down
can be described by A(t) = 1− t (where t = 0 is referenced to the start of the ramp-down
pulse), which is equivalent to CubicSpline(c0 = 1.0, c1 = −1.0, c2 = 0.0, c3 = 0.0).
Similar pulses, comprised of up to cubic (3rd-order) polynomials, could be equally well-
represented by a pair of CubicSplines.

Given the capability of an RFSoC to output near-arbitrary waveforms, generating

the waveforms now becomes a problem of filling the spline engines with the appropriate

data. In this scheme, a user will send a data stream corresponding to the waveforms to

the Octet rfcontrold, which will transfer that data into the FPGA’s memory using DMA

(Direct Memory Access). This sequential buffer is then routed to the appropriate per-

channel spline engines, and then output in sequence. There are two ways of programming

a waveform sequence: streaming mode (Section 5.5.2.2) or gate mode (Section 5.5.2.3).

waveform lasts for more than 512B ∗ 8 bit
B /16

bit
Sa = 256Sa(≡ 256 nsonanAWGoperatingat1GSa s−1),

the RFSoC encoding will be more space-efficient.

130

5.5.2.1 Cubic Spline Word Format

Before considering how data words are processed in either streaming or gate mode, it is

important to consider the data word format. One straightforward way of considering the

RFSoC gateware is as a simplified RISC (Reduced Instruction Set Computer) processor.

14 Each RFSoC programming word is the same width (256 bit or 32B). The programming

sequence is read by the RFSoC in sequential order, so it should be time-ordered. As each

word is read, it is either:

1. Distributed to spline engine

2. Programmed to look-up table (LUT)

3. Retrieves words from LUT

The first method (distribution) is the streaming mode, and the second and third

methods are the gate mode.

In addition to its processing method, the words also contain metadata that indicates

how the data word should be processed, typically by the spline engine. These include

flags such as waiting for a trigger before output, whether the output should be toggled

on/off, if frequency feedback should be toggled on/off, etc. See [145] for more metadata

details.
14The primary simplifications are in lack of conditional sequences, arithmetic logic, and registers, but the

general concept of fixed-size instruction words that are sequentially processed, decoded, and acted upon still
holds.

131

5.5.2.2 Streaming Mode

Streaming mode is conceptually very simple. Given a queue of spline engine program-

ming words, a simple sequencer will process each item in the queue by distributing it to

a buffer for the appropriate spline engine. Each spline engine will process the words that

have been distributed to it in the order that they have been received, and begin the next

item in its buffer once the previous spline’s duration has elapsed. To ensure that the out-

puts of all spline engines are aligned correctly in time (i.e. that there is no skew between

different channels), it is recommended to begin all sequences with a “wait-for-trigger”

word for each spline engine, which will delay all outputs until it receives a trigger signal.

15

However, our testing has shown that streaming mode is not always reliable for long

sequences of pulses. Specifically, for certain pulse sequences a channel will stop out-

putting partway through the sequence, and never resume. We have not been able to debug

some of these issues due to license restrictions, not having the source code, and alternative

options like the LUT programming mode being available. 16

To program the RFSoC with a streaming data sequence, you must first generate

the programming words for each spline engine. Then those programming words must be

sorted in time across all spline engines. This ensures that all spline engines will be filled

with the appropriate data for the entire sequence, and will not starve. 17 For example,

15This trigger can actually equally be either a hardware input line or a software signal. Because the
RFSoC is a digital device, it is simple to OR two inputs (i.e. hardware trigger & software trigger), and use
the OR’d signal as the trigger input.

16Streaming mode is also relatively low-priority for the Sandia developers, so this might be a dead-end
approach. Our general belief is that there is some issue with DMA transfers, but we have not been able to
investigate further.

17i.e. be empty of data

132

consider a situation where the entire sequence for a single spline engine (SE1) was sent

sequentially, and then the second spline engine (SE2) was programmed. If SE1’s buffer

overflowed before any data was sent to SE2’s buffer, then the gateware responsible for

distributing the input data would need to select between dropping the remainder of the

data destined for SE1 (to allow SE2 to receive any data), or waiting until SE1’s buffer

emptied enough to continue sending it data, which would cause SE2’s output to be delayed

behind SE1 in time. In reality, the second situation is what has been implemented on

Octet.

Calculating the number of data bits to represent a sequence in streaming mode is

very straightforward: it is the sum of the number of CubicSpline words that you use

times the size of each programming word (256 bit). If we make the same simplification

assumptions that a ToneData (see Chapter 6) does (a single tone’s frequency/ampli-

tude/phase is modulated simultaneously for the same duration, thus all 4 spline engines

of a tone are executed simultaneously for the same duration), then this reduces to:

Nwords =
Ntones∑

t

NToneDatat ∗ 4 (5.4)

where Ntones is the number of tones for a given RFSoC board, and NToneDatat is the

number of ToneData to be played on a given channel’s tone for a waveform sequence.

For a sequence where 1024 ToneData are played on each of 8 channels (16 tones)

simultaneously, Nwords = 65 536words = 2MiB. Note that in streaming mode, if this

sequence needs to repeat (e.g. for multiple shots), then this entire 2MiB sequence will

need repeated ×Nshots.

133

5.5.2.3 LUT Programming Mode

To solve these data distribution problems, as well as to reduce the amount of data that

needs sent to the RFSoC even further, a solution was devised that essentially caches blocks

of waveforms in the RFSoC memory. We call this method LUT mode (Look-Up Table) or

gate mode, as opposed to the previously-described streaming mode.

To maximize potential reuse, the Sandia developers decided to implement hierar-

chical LUTs, one per output channel (i.e. two output tones for the same channel share a

LUT). From lowest to highest-level: 18

1. Pulse LUT (PLUT): Contains spline engine programming words, one per address.

Example entry: {addrPLUT : (256 bit spline word)}

2. Memory Map LUT (MLUT): A pointer to an entry in the PLUT. This allows the

same pulse to be re-used in different sequences. Example entry: {addrMLUT :

addrPLUT}.

3. Gate LUT (GLUT): Range of MLUT entries that comprise a gate. Playing one

“gate” will execute all MLUT entries in range [addrlower → addrupper] (inclusive

of both ends). Example entry: {addrGLUT :
(
addrMLUTlower

, addrMLUTupper

)
}

4. Gate Programming Data: List of entries from the Gate LUT that should be executed

on a given channel.

18Note: the names “gate” and “sequence/memory map” are figurative, and not binding. That is, one
entry in the “gate” LUT can actually combine the output waveforms for several gates if desired, or a single
sub-segment of a gate. This will be covered more in ??.

134

Figure 5.2: Example of a single-channel square amplitude waveform. This waveform
sequence is used to illustrate an example in Eq. (5.5)

With this scheme, instead of specifying each individual pulse that should execute at

any point in time, the desired waveform sequence can now be described as a sequence of

gate entries to play on a given channel. Then the entire waveform programming sequence

looks like:

1. Program PLUT, MLUT, and GLUT entries for channel 1 . . . nchannels.

2. Execute gates 1 . . . ngates on channel 1 . . . nchannels (a single shot).

3. Execute remaining shots: repeat data from #2 nshots times (total, inclusive of #2).

In this scheme, the gates are not required to be the same across all channels: the

gate sequence for channel 1 might be [0, 5, 3, 2], but for channel 2 it can be [0, 2, 1, 5].

This scheme allows compressing the waveform sequence even smaller than that

of the streaming mode (Section 5.5.2.2). In the case of a single square pulse repeated

Ngates× (e.g. Fig. 5.2), the number of 256 bit words per unique pulse sequence will be:

19

Nwords = NPLUT entries +

⌈
NMLUT entries

9

⌉
+

⌈
NGLUT entries

6

⌉
+

(⌈
Ngates

Ngates per word

⌉
∗Nshots

)
(5.5)

Nwords = 4 + 1 + 1 +

(⌈
Ngates

24

⌉
∗Nshots

)
(5.6)

19This equation ignores a slight constant overhead due to preparation & end-of-sequence buffering
pulses. These might be able to be removed with proper testing, but currently they add a per-channel over-
head of NPLUT entries + 8, NMLUT entries + 8, NGLUT entries + 2, Ngates + 3.

135

This equation assumes that data is only being written to a single output channel. If

Eq. (5.5) is expanded to output to every channel then the equation becomes:

Nwords =

Nchannels∑
ch=0

(
NPLUT entries +

⌈
NMLUT entries

9

⌉
+

⌈
NGLUT entries

6

⌉
+

(⌈
Ngatesch

24

⌉
∗Nshots

))
(5.7)

If the example waveform from Fig. 5.2 is played on a single tone for each of eight

channels, the equation becomes:

NPLUT entries = 8 (5.8)

NMLUT entries = 8 (5.9)

NGLUT entries = 1 (5.10)

Nwords =
8∑

ch=1

(
8 +

⌈
8

9

⌉
+

⌈
1

6

⌉
+

(⌈
Ngatesch

24

⌉
∗Nshots

))
(5.11)

Assuming 100 shots of this sequence, and 24 gates per sequence,Nwords = 880 words =

27.5KiB.

5.5.3 RFSoC Crosstalk

One common source of error in quantum computers is crosstalk between addressed qubits.

Crosstalk can arise from several sources, whether optical, electrical, or acoustic [152, 153,

154, 155].

If the crosstalk components are relatively stable, it is theoretically possible to can-

136

cel this crosstalk by applying inverse tones to the offending channel(s). For clarity, we

will call the channel whose output is intended the “drive” channel, and the channels that

experience crosstalk will be the “crosstalk” channels.

Consider a case that we have experienced: we observed crosstalk at a desired ion

from neighboring ions. We determined that the crosstalk primarily originated in the in-

dividual AOM, as acoustical waves that produced the AOM effect would also modulate

the neighboring channels. This effect is approximately at the 3% level in terms of Rabi

rate20 between neighboring ions in a chain21. We then demonstrated that by applying

cancellation tones of a calibrated amplitude and phase, we could effectively nullify this

crosstalk effect. The cancellation tones would use the calculated output on the desired

channel, say Channel 5. We then observed and calibrated the crosstalk amplitude and

phase on Channels 4 & 6. To cancel the crosstalk, we would then calculate the sine waves

for the desired channel, and then apply a phase and amplitude adjustment to that output

before adding it to the output of Channels 4 & 6. In Eq. (5.12) we express this crosstalk

application mathematically, where we let:

• N be the offset of a neighboring channel from the drive channel, forN ∈ {−2,−1, 1, 2}.

• Wdrive,Wdrive+N are respectively the output waveforms (sine waves) on the drive

channel, and the neighboring channels offset by N, after all crosstalk correction has

been applied.

20Rabi rate is effectively the frequency at which a Rabi flop is executed on an ion. A Rabi rate of 1MHz
means that one Rabi flop of 2π rad will be executed every 1 µs. Thus a crosstalk amplitude of 1% in Rabi
rate will drive a Rabi flop on the unintended ion that is 100× slower than the Rabi rate intended ion. For a
1MHz drive Rabi rate, that means the crosstalk will have a Rabi rate of 10 kHz.

21We were later able to determine that the majority of this crosstalk was due to a slight optical mis-
alignment into the AOM cell, which exacerbated this crosstalk effect.

137

•
∑
odrive (ϕ) ,

∑
odrive+N (ϕoffset) are the outputs of all tones of a drive channel

(see Eq. (6.1)), with a specified phase offset ϕoffset.

• Axtalk,N , ϕxtalk,N are the amplitude multiplier and phase offset that will be applied

to a given channel.

Wdrive =
∑

odrive(ϕoffset = 0) (5.12)

Wdrive+N =
∑

odrive+N(ϕoffset = 0) + Axtalk,N ∗
(∑

odrive(ϕoffset = ϕxtalk,N)
)

(5.13)

Note that crosstalk correction values are actually a matrix, in the above example

crosstalk was simplified into a single row of the matrix. The elements of the crosstalk

matrix are defined as Ci,j equals the crosstalk from ion i onto ion j. If we consider

only crosstalk amplitude for a 4-ion linear chain, with only nearest-neighbor crosstalk, an

example crosstalk matrix could look like:

CA =



0 0.1 0 0

0.01 0 0.01 0

0 0.01 0 0.01

0 0 0.01 0


(5.14)

Note that the diagonal has no crosstalk, because that is the desired effect of driving that

ion.

On a traditional AWG-based solution, crosstalk cancellation is expensive to apply

138

because it requires pre-computing all intended waveforms, and then also computing the

crosstalk cancellation waveforms to apply. The RFSoC running Octet neatly bypasses

this computation problem by calculating crosstalk cancellation in real-time. Essentially, it

routes the output of an intended drive channel’s spline engines to its neighboring channels.

Each of these channels then applies the specified crosstalk amplitude multiplication and

phase offset to obtain the final output signal for that channel.

5.5.4 RFSoC Single-channel Frequency Synchronization

The RFSoC offers two waveform output modes of frequency output: global synchronous

and contiguous (essentially whether global synchronization is applied or not). This con-

cept is fully explained in [145, Section V], and illustrated in [145, Fig.2] and [156, Fig.

24].

In short, global synchronous can be thought of as referencing the phase to a per-

RFSoC board frequency reference (counter), which is initialized at board start-up time.

This frequency reference is essentially unique per-frequency, which means that a slight

frequency error (even due to rounding errors) can cause a large phase discontinuity when

using this mode.

The (default) alternative, contiguous, is that the output waveform will remain con-

tinuous over frequency changes, as illustrated in [145, Fig. 2].

139

5.5.5 RFSoC Real-Time Pulse Feedback

One critical feature that the RFSoC supports, enabling logical qubit error correction [39]

and other interactive algorithmic uses, is the ability to select which gates will be executed

(which waveforms will be output) in real time.

This feature works by implementing an “ancilla” (aka conditional) register, which

can be populated either by GRPC commands or real-time hardware signals. To explain

the operation of this feature, let us consider a simple sequence:

1. Play unconditional pulse on 4 channels simultaneously.

2. Play conditional pulse on selected channel of the 4.

Executing this sequence then requires the following steps:

1. Generate data words for each of the pulses (both conditional and unconditional).

2. Assign Look Up Table Addresses (see Section 5.5.2.3 for introduction). This is mod-

ified by assigning each “branch” to a different section of the Gate LUTs, based on

the address prefix. For example, with a single-bit conditional address 0...2 implies

the False condition, and address 1...2 implies the True condition. At execution

time, if it is a conditional “gate”, then the condition is pre-pended to the GLUT

address, thus selecting the appropriate conditional gate.

3. Send programming data to the RFSoC.

4. Trigger RFSoC to begin sequence.

5. RFSoC outputs unconditional sequence.

140

6. RFSoC waits for conditional choice.

7. Send selected condition to the RFSoC: either via GPIO pins, SPI, or software.

8. Trigger RFSoC to begin conditional sequence.

9. RFSoC outputs conditional sequence.

10. (Optional): either continue with unconditional sequence, or repeat #6 through #8

for another conditional execution.

The limitation of this model is that it only supports linear circuit execution, and

not fully arbitrary branching sequences. That is, the same condition can be re-executed

multiple times, but only in a pre-defined sequence. So the following is possible:

1 conditional_gate_0
2 conditional_gate_1
3 conditional_gate_0

But this sequence is not:

1 while condition; do
2 conditional_gate_0
3 done
4
5 conditional_gate_1

Fundamentally, this is because there is no branching instruction for the control se-

quence. The conditional statement only applies to the output waveforms (i.e. selecting

a set of PLUT entries to play), and cannot be used to choose which gate sequence to

execute.

141

5.6 RFSoC Inputs & Outputs

5.6.1 RFSoC Inputs

The RFSoC has two types of inputs: real-time and setup. The real-time inputs are used

for controlling a pulse sequence during a quantum operation (or to start the quantum

operations), and the setup inputs are to either initialize the RFSoC board or communicate

the pulse sequence to the RFSoC.

For real-time inputs, the RFSoC has:

• Trigger: begin outputting a sequence. This is a digital input signal.

• “Ancilla” Control: Choose which conditional branch to execute (see Section 5.5.5).

• Feedforward Signal: an RF ADC channel receives the RF error signal, as described

in Section 5.5.1.

The setup inputs are configuration values, which are primarily conveyed over GRPC

on a LAN (Local Area Network), from either a GUI program or a script. These include

specifying which channels and spline engines should be enabled, crosstalk values, etc.

5.6.2 RFSoC Outputs

Every RFSoC board supports 8× channels of RF DAC output, in addition to any digital

outputs that can normally be output from an FPGA. The Sandia RFSoC gateware supports

two digital status update signals: output busy (i.e. some signal is currently being output

on the channels), and FIFO empty (i.e. there is no data currently queued into the spline

142

engines).

These signals can be used as part of a control loop, such as causing the ARTIQ

control device to wait until the RFSoC has finished outputting to begin the next section of

the experimental sequence.

5.7 Conclusion

In summary, an RFSoC-based RF waveform system adds the capability for performing

conditional RF sequences, which allows for limited logical qubit error correction capa-

bility. In addition, it adds the major quality-of-life improvement of improving the pre-

experiment waveform generation time by an order of magnitude or two, both due to in-

herent design and optimized waveform generation code as will be described in Chapter 6.

We have successfully demonstrated this RFSoC-based system on ions, as shown in Chap-

ter 7, and plan to use it for future experiments.

143

Chapter 6: PulseCompiler Waveform Synthesis & Specification

6.1 PulseCompiler

Currently, there are no existing off-the-shelf solutions that provide a high-level software

interface for specifying arbitrary waveforms, while meeting all the requirements of a

quantum computing laboratory. Furthermore, there are no existing COTS solutions that

can compile to our RFSoC hardware described in Chapter 5. The goal of such a pack-

age would be to specify near-arbitrary waveforms, which can modulate native attributes

of a RF signal such as frequency, amplitude, and phase, and then output data in a for-

mat understandable by the RFSoC. Conceptually, this system might look like a high-level

ISA (Instruction Set Architecture), where users can specify a “program” to execute that

changes waveform attributes in real time.

Existing solutions are either too hardware-specific, such as controlling a specific

DDS IC, or not quite general enough. The closest existing solution that we found to our

needs is OpenPulse from IBM’s quantum computing group [26], but that still does not

meet all of the needs of our quantum computing lab. For instance, OpenPulse has the

following advantages and disadvantages:

• Advantages:

144

– Open Source, so can be modified or investigated to resolve issues.

– Well-documented, which reduces developer workload for producing docu-

mentation on how to use a custom solution.

– Built-in conversions from quantum circuits to waveforms. This reduces the

scope of the required work to a translation layer from OpenPulse to running

on the RFSoC system.

– Part of a common quantum computing package, to minimize the learning

curve for working with the OpenPulse package (and its enclosing package

qiskit-terra).

• Disadvantages:

– Supports continuous amplitude modulation, but only discrete frequency or

phase modulation (so continuous FM/PM gates are not natively possible).

– Unclear or non-existent systems for outputting multiple RF tones to a single

output channel/qubit. In other words, they assume one frequency per output

channel, which is not compatible with standard trapped ion gates that we use

on the EURIQA Breadboard.

– Does not support arbitrary control sequences, such as branches or conditional

pulses.

Ultimately, we found that OpenPulse was very close to our needs, and any short-

comings could be circumvented with relatively small effort. As such, we decided to

build extensions to the OpenPulse concept, allowing it to support the full power of the

145

SNL Octet RFSoC software while also integrating with pre-existing quantum circuit-

processing software developed by our laboratory.

This chapter will describe the PulseCompiler (also represented as pulsecompiler)

package and its integration with RFSoC software. On some levels, PulseCompiler

is a re-implementation of Sandia National Lab’s GateCompiler/JAQAL interface [145]

for programming an RFSoC running the SNL Octet firmware/gateware. On other levels,

it is a translation from (and extension of) OpenPulse to waveforms that run on RFSoC

hardware.

6.1.1 PulseCompiler Overview

At a high level, this package provides a method for declaring RF sine waves that will be

played on the RFSoC, and then converting those sine waves to the binary programming

data for the Octet firmware/gateware. These sine waves can then be used to construct

quantum gates to perform desired quantum operations.

6.1.2 Implementation

The basic class structure of PulseCompiler can be seen in Fig. 6.1. One key com-

ponent is ToneData, which represents the output of a single tone (i.e. specific fre-

quency, amplitude, phase) on an output channel for a duration, as well as the accom-

panying metadata/flags. A tone’s output 1 is described as a list of ToneData. To en-

capsulate a set of outputs across all tones & channels, we use a ChannelSequence,

which is a dictionary between a channel representation (whether in Qiskit format e.g.

1This can also be thought of as the output of a DDS IP core.

146

ChannelTone

channel : int
tone : int

ChannelSequence Channel (i.e. key)

e.g.

ChannelType (Enum)

INDIVIDUAL
GLOBAL

RFSoCChannel

ip_address: str
ip_port : int
channel_index : int
board_channel_index : int
unique_tone_index : int
tone_index_per_type : int
channel_tone_index : int
channel_type : ChannelType
qiskit_channel

channel_type

CubicSpline

order0 : int/float
order1 : int/float
order2 : int/float
order3 : int/float

autoscale_coefficients(cls, spline, output_bits, max_shift, signed_output)
calculate_output_values(num_cycles, tstep)
map_to_accumulator(cls, spline, tstep, dtype)

bytes
is_empty : bool
is_static : bool

ToneData

amplitude : FloatOrSpline
board_channel : int
bypass_lookup_tables : bool
channel : int
duration_cycles : int
duration_seconds : float
feedback_enable : bool
frame_rotate_at_end : bool
frame_rotation_rad : float
frequency_hz : FloatOrSpline
output_enable : bool
phase_rad : FloatOrSpline
reset_frame : bool
sync : bool
tone : int
wait_trigger : bool

amp_spline(amplitude)
frequency_spline(frequency_hz)
from_bytes(cls, programming_words)
phase_spline(phase_rad)

amplitude_modulation_word
frequency_modulation_word
frame_rotation_modulation_word
phase_modulation_word
output_values
programming_words

amplitude
phase_rad

frequency_hz
frame_rotation_rad

PDQSpline

order0 : int
order1 : int
order2 : int
order3 : int

calculate_output_values(num_cycles, tstep)

amplitude
phase_rad

frequency_hz
frame_rotation_rad

CubicSplinePulse

parameters
pdq_spline
tonedata

get_waveform()
validate_parameters()

pdq_spline

InitializationOpts

enable_all_modulation : bool
...

RFSoCBoardDescriptor

index : int
ip_address : str
ip_port : int
has_global_output : bool
global_output_first : bool
num_outputs : bool
num_tones_per_output : int
initialization_options : InitializationOpts

initialization_options

OpenPulseToOctetConverter

pulse_qobj_to_octet(pulse_qobj)
schedule_to_octet(schedule, default_lo_freq_hz, wait_trigger, auto_pad)

creates

RFSoCChannelMapping

boards : List[RFSoCBoardDescriptor]
hardware_to_qiskit_channel_map
ip_addresses: Set[str]
qiskit_channel_to_hardware_map
qiskit_channels
rfsoc_channels : Set[RFSoCChannel]

from_json_file(path)
from_pyon_file(path)

boards: 1..* rfsoc_channels: 1..*

_IonRFSoCBackendConfiguration

all_channels
all_ions_center_index_iter
basis_gates
dt
is_odd_ions
left_endcap_ions : int
meas_map
n_qubits
num_qubits
open_pulse
parametric_pulses
rfsoc_channel_map
right_endcap_ions : int
sample_rate
total_ions

acquire(ion)
control()
drive(ion, index)
get_channel_qubits(channel)
get_ion_channels_center_index(ion)
get_qubit_channels(ion)
global_channels()
individual_channel(ion, index)
measure(ion)

rfsoc_channel_map

tonedata

ToneDataPulse

parameters
tonedata

get_waveform()
validate_parameters()

tonedata

parametric_pulses parametric_pulses

MinimalQiskitIonBackend

circuit_scheduler_settings
transpiler_settings

configuration()
defaults()
properties()
set_properties(properties)

_config

Values: 1..*

Figure 6.1: Primary pulsecompiler classes, as a UML class diagram. Higher-level
classes are optional, and are only relevant if you are using qiskit for describing pulses.
The base classes are at the bottom, and more abstract ones are towards the top. Green text
w/ an arrow denotes a class attribute is an instance of the other class, most other arrows
are inheritance.

147

qiskit.pulse.DriveChannel or a tuple pair of (channel, tone) called ChannelTone)

and a List[ToneData]. It is the user’s responsibility to ensure that all tones end at

the same time and have the same number of triggers (this can be handled automatically if

using the built-in conversion class OpenPulseToOctetConverter).

The default Octet gateware provides for ≤ 2 independent tones on a single RF out-

put channel. These are treated independently through most of the gateware (see Fig. 6.2),

until they are summed just before being output, so pulsecompiler does the same.

148

RFSoC Command Diagram

RFSoC Gateware

Channel 0 Output Sequencer

Data Word Interpreter
(Channel 0)

Lab
Network

Octet GRPC Server

input_buffer

Channel Division

Bypass
LUTs? channel_1_sequencer channel_..._sequencer channel_7_sequencer

channel_0_buffer

tone_0_frequency_buffer tone_0_amplitude_buffer tone_0_phase_buffer tone_1_frequency_buffertone_1_amplitude_buffertone_1_phase_bufferframe_a_buffer frame_b_buffer

Channel 0 Static Registers

Tone 0 Frequency

Tone 0 Amplitude

Tone 0 Phase

Tone 1 Frequency

Tone 1 Amplitude

Tone 1 Phase

tone_0_phase tone_1_phasetone_0_amplitudetone_0_frequency tone_1_amplitude tone_1_frequency

Global Phase Reference
(per-frequency)

Sync? Sync?

tone_0_frequency_spline tone_0_amplitude_spline tone_0_phase_spline

sine_lookup_tone0

tone_1_frequency_splinetone_1_amplitude_splinetone_1_phase_spline

sine_lookup_tone1

frame_a

frame_a_register

optional optional

frame_b

frame_b_register

optional optional

+

RF DAC
Channel 0

(differential)

Gate
Sequence
Playback?

Program
LUT

No

Gate LUT

addr Sequence LUT Start Addr Sequence LUT End Addr

...

Yes

Pulse LUT

addr Spline Word

...

Sequence LUT

addr Pulse LUT Addr

...

Yes

No

channel_1_rf_output channel_..._rf_output channel_7_rf_output

Figure 6.2: Graph of how a data word is transferred to and interpreted by the Octet RFSoC gateware. Note that there are a total
of 64 spline engines, 8 parameters for 8 channels (not all shown). This diagram is based on my best understanding, and might not be
100% accurate without access to the binary source code.

149

The recommended method of declaring your pulse sequence is creating a qiskit.

pulse.Schedule, then converting that to ChannelSequencewith pulsecompiler.

qiskit.schedule_converter.OpenPulseToOctetConverter.schedule_to_octet().

6.1.3 Uploading to A RFSoC

The channel mapping (i.e. which output channel that a tone should play on) of a ChannelSequence

can remain unspecified until upload time. This allows reusing the same schedule across

different devices, or using abstract channel representations (e.g. qiskit.pulse.DriveChannel)

across multiple boards.

However, just before a sequence is run, when uploading the desired pulse sequence,

the pulsecompilermust know which exact RFSoC board and channel that the List[ToneData]

should play on. Thus, pulsecompiler expects a mapping between abstract channel

representation and a RFSoCChannel. If you are using pulsecompiler in con-

junction with qiskit, this is handled with RFSoCChannelMapping, which pro-

vides a default mapping from Union[DriveChannel, ControlChannel] ->

RFSoCChannel. It generates this using a configuration file describing the RFSoC

boards, their capabilities, and their IP addresses.

If the flush flag is set, then any previously-queued sequence in RFSoC memory

will be cleared, otherwise the new sequence will be appended to the sequence already

in-memory.

150

6.2 RFSoC Output Modulation

The RFSoC defines the output waveform for a particular tone as roughly

otone(dt) = amplitude(dt) ∗ sin(frequency(dt) ∗ 2π ∗ dt+ phase(dt)+ frame) (6.1)

Note that there are four modulation parameters: amplitude, frequency, phase, and

frame rotation (i.e. RZ, or an accumulated phase carried over between pulses). Each of

these modulation parameters is represented as a Cubic (third-order) spline, and is fed to

the DDS core that generates the digital sine wave output. The spline outputs are calcu-

lated using accumulators, and the spline outputs are relative to the start of that parameter’s

command word (i.e. dt). In other words, you can continuously vary any of the frequen-

cy/phase/amplitude over the duration of an RFSoC output pulse. 2

The spline parameters have two logical types: a real-valued type CubicSpline,

and the type PDQSpline that is actually used on the RFSoC. They are functionally

equivalent, but the component values are slightly different due to optimizing the values to

be better accumulated in the hardware. 3 Both are accepted interchangeably throughout

the pulsecompiler, though CubicSpline are easier to understand.

To understand how CubicSplines can be used in a ToneData, consider the follow-

ing example of linearly ramping the amplitude of a sine wave from 0.0 → 1.0 (arbitrary

2Though not explicitly shown, the frame rotation can also be varied over time, but it makes more logical
sense to consider a constant frame rotation applied at the beginning or end of the pulse, and have the
time-modulation on the phase parameter.

3See Footnote 12 from Chapter 5 for more details on PDQSpline vs CubicSpline.

151

units) over 100 clock cycles: 4

1 amp = CubicSpline(0, 1, 0, 0)
2 t = ToneData(0, 0, 100, 200e6, amp, 0.0)

6.3 OpenPulse Waveforms

PulseCompiler was designed to work seamlessly with Qiskit Terra’s Pulse module (qiskit.

pulse), aka OpenPulse. The goal of PulseCompiler is that users can define a qiskit.pulse.Schedule,

which can be converted to an equivalent set of pulses for the RFSoC to play.

6.3.1 Why OpenPulse?

The primary reason that a translation layer from OpenPulse to the RFSoC was decided to

be used was that it can take advantage of the pre-existing qiskit infrastructure invest-

ment both from IBM and the greater community. So it makes sense to reuse as much of

their user-interface design as possible, and just interpret their data structures. OpenPulse

has the following further advantages:

• Per-channel RF control.

• Understanding of timing at the clock cycle level.

• Visualization tools for Schedules.

• Data structures for Schedules, Pulses, and serialization of those data structures as

JSON dicts.
4The other parameters of ToneData above represent, respectively: channel 0, tone 0, duration 100

clock cycles, frequency 200MHz, phase 0.0 rad.

152

6.3.2 PulseCompiler vs OpenPulse Assumptions

IBM made some assumptions [157] about the hardware available for OpenPulse backends

that do not exactly match those available on EURIQA/Ion Systems.

• Qiskit assumes all Channels are mixed with a frequency source.

• One DriveChannel per qubit. PulseCompiler allows multiple (i.e. one RFSoC

output channel has two tones, each tone is mapped to one DriveChannel).

• A ControlChannel can drive multiple qubits. In PulseCompiler, the ControlChannel

is assumed to touch ALL qubits (i.e. as a global beam via AOM/RF channel).

• MeasurementChannel and AcquireChannel are not supported via PulseC-

ompiler, because they are not directly driven by RFSoC. The closest equivalent for

these would probably be the readout DDS, which is currently controlled by ARTIQ.

6.3.3 PulseCompiler & OpenPulse Schedules

Qiskit supports some basic classes of pulse instructions that can be added to schedules.

These consist of:

• Phase: set or shift (i.e. adjust upwards or downwards).

• Frequency: set or shift.

• Pulses: Amplitude control, for e.g. playing a Constant-amplitude sine wave.

Schedules are defined in terms of dt, which is the native timescale of the backend’s

waveform generator (i.e. the RFSoC), roughly its clock cycle. For the RFSoC, dt =

153

1
409.6MHz

≈ 2.45 ns. As an example schedule, the following will play a 200MHz sine

wave of constant amplitude at ϕ = 90◦ for 100 dt (≈ 250 ns):

1 import qiskit.pulse as qp
2
3 out_chan = qp.DriveChannel(0)
4 with qp.build() as sched:
5 qp.set_frequency(200e6, out_chan)
6 qp.set_phase(3.14/2, out_chan)
7 qp.play(qp.Constant(100, 1.0), out_chan)

This schedule can then be stored (serialized) as a qiskit PulseQObj.5 If you

are using a typical AWG-based waveform generator, then storing waveforms as sam-

ples makes sense. However, storing waveform samples does not make sense for the RF-

SoC, as that is inefficient, redundant, and does not match the hardware capabilities. The

“workaround” is that pulsecompiler for RFSoC only supports Qiskit ParametricPulses

(which include pulses such as Constant, Gaussian, GaussianSquare), which

PulseCompiler then synthesizes into the appropriate ToneData. In other words, qiskit.

pulse.Waveform (formerly SamplePulse) is not supported in PulseCompiler.

The limitation of this is that OpenPulse by default only supports discrete phase &

frequency modulation (but continuous amplitude modulation), while the RFSoC supports

third-order modulation of frequency, phase, or amplitude. To circumvent this limitation,

we added support for two additional ParametricPulses via PulseCompiler: CubicSplinePulse,

and ToneDataPulse. CubicSplinePulse fits in the Qiskit standard of amplitude-

only modulation, but provides third-order modulation of the amplitude to match RFSoC

capabilities. ToneDataPulse is designed to exactly mirror ToneData and expose its

capabilities to Qiskit schedules. So any control available in ToneData, is also available

5A PulseQObj essentially resolves any parameters/frequencies, converts the schedule to a set of in-
structions, and stores any waveforms associated with the schedule.

154

in ToneDataPulse.

Once a schedule is created, it can be converted to a ChannelSequence with

pulsecompiler.qiskit.schedule_converter.OpenPulseToOctetConverter.

schedule_to_octet().

6.4 Converting Circuits to RFSoC Output

While the full scope of this functionality is slightly out of the scope of PulseCompiler

(primarily because we leave the definition of custom gates up to the end-user), it is still

instructive to understand what pieces need to be written in order to convert a qiskit.

circuit.QuantumCircuit to a ChannelSequence ready for upload.

155

Converting & Uploading Qiskit Circuit/Schedule to RFSoC

Client PC (i.e. Jupyter session)

ARTIQ Master PC

euriqafrontend.settings: CalibrationBox

...

...

pulsecompiler: MinimalQiskitIonBackend

...

configuration()
properties()
defaults()

configuration().rf_calibration
(optional)

euriqafrontend.modules: RFSoC

openpulse_schedule_qobj
compiled_schedule_list

_qiskit_backend
_rf_calib

...

compile_pulse_schedule_to_octet(pulse_schedule)
upload_data(num_shots, channel_schedules)

...

_rf_calib

qiskit.circuit: QuantumCircuit

...

...

qiskit.compiler .sequence()qiskit.compiler .transpile()

qiskit.pulse: Schedule

...

...

qiskit.compiler .assemble()

pulsecompiler...OpenPulseToOctetConverter:
schedule_to_octet()

qiskit.qobj: PulseQObj

...

pulsecompiler...OpenPulseToOctetConverter:
pulse_qobj_to_octet()

openpulse_schedule_qobj
(optional, from ARTIQ Experiment args)

qiskit.pulse.build()

EURIQA Gate Schedules
e.g. 1QB, 2QB gates

defined as f(..., backend) → Schedule
euriqabackend.waveforms

_qiskit_backend

euriqabackend.waveforms: EURIQAInstructionScheduleMap

...

...

pulsecompiler...ToneData: ChannelSequence (key: value) = Channel : List[ToneData]

compile_pulse_schedule_to_octet()

pulsecompiler...upload_data: upload_channel_sequence(seq)
alt.: upload_multiple_channel_sequences(seqs)

upload_data()

compiled_schedule_list

RFSoC FPGA

ARTIQ Datasets

_init_datasets()

Figure 6.3: Diagram of the different inputs needed to convert a Qiskit
QuantumCircuit to a ChannelSequence. Incoming arrows denote inputs to a
given entity. Squares are classes, ovals are functions. Italics denote the package that a
class/function can be found in. Green text on a diamond arrow denotes that a class at-
tribute (text) of the pointed class is an instance of the arrow’s source. Not every class is
necessary in this diagram: for instance, the PulseQObj can be bypassed entirely if se-
rialization is not needed, or a CalibrationBox is not needed if your gate waveforms
do not require calibrated values.

156

Qiskit Circuit -> RFSoC ARTIQ Experiment

Qiskit Circuit Qiskit Backend Qiskit Schedule ARTIQ Experiment (Master PC) PulseCompiler ChannelSequence RFSoC ARTIQ FPGA

Create InstructionScheduleMap
* Map from Instructions (i.e. Gates) -> Schedule comprising the Gate

Sequence Circuit -> Schedule: sequence()
* Uses Backend's InstructionScheduleMap

Submit PulseQObj in Experiment Args
(PulseQObj = serializable schedule)

De-serialize PulseQObj -> Schedule

Compile Schedule -> RFSoC ChannelSequence (prepare())
ChannelSequence = Dict[Channel -> List[ToneData]]

Wait for experiment to run()

Upload ChannelSequence -> RFSoC
* Convert ChannelSequence -> Binary
* Upload via GRPC

Begin ARTIQ experiment on ions

Trigger RFSoC for SBC

Pump for SBC

Trigger RFSoC for Circuit RF Output

Wait Circuit Duration

End Experiment

loop [num_shots]

Figure 6.4: Diagram of the order of operations for converting a QuantumCircuit to run on an RFSoC. Once a
QuantumCircuit is converted to run on an RFSoC, it can be triggered and executed as described in Chapter 5.

157

Note in Fig. 6.3 that only the top few functions are defined in end-users’ code, which

primarily relate to generating and calibrating the gate waveforms. If the most up-to-date

calibration properties are not desired (i.e. using uncalibrated gate waveforms), then the

Gate Schedules do not need any interaction with ARTIQ or the CalibrationBox class

at all.

6.4.1 What is a Qiskit Backend?

A Qiskit Backend is a data structure that contains all that Qiskit needs to know about your

hardware in order to compile a QuantumCircuit for it.

The exact attributes that need to be in the Backend are poorly-documented by

Qiskit, but a minimal example was implemented in pulsecompiler.qiskit.backend.

MinimalQiskitIonBackend.

Broadly, a Backend has 3 main types of data:

• Configuration: Basic information about the backend, which tends to be static. Ex-

amples: number of qubits, whether it supports OpenPulse, the OpenPulse Para-

metricPulses that it supports, and a mapping between qubits and the corresponding

OpenPulse channel.

• Properties: measurements/status of the backend. Can be anything from calibra-

tions, T1/T2 times, gate definitions (in terms of Schedules), etc.

• (Unsupported/unimplemented): how to submit a schedule/circuit to run on the back-

end.

158

When transpiling/sequencing/assembling a QuantumCircuit/Schedule object for the

Backend, it will pull default values for any desired arguments from the Backend’s properties()

or configuration() as needed. If it fails to find the needed property, the Qiskit con-

version method will typically fail.

If you are defining a set of gates for your experiment that depend on calibra-

tion values, it makes sense to add the required calibration values as a data structure to

configuration(), as demonstrated in Fig. 6.3 with CalibrationBox.

6.4.2 Schedule to Channel Sequence Conversion

Once a schedule is generated for a given pulse sequence, that schedule must still be con-

verted to a sequence of ToneData that will be sent to the RFSoC. This is somewhat

of a compilation process (hence the name PulseCompiler), though it is really closer to

parallel-processing a fixed sequence of inputs.

It is important to note that though an OpenPulse Schedule appears parallel, its

canonical representation when all parameters are resolved is actually a single linear se-

quence of instructions. Each instruction is a Python tuple, as demonstrated in Listing 6.1,

consisting of a pair of (timestamp, instruction).

1 import qiskit.pulse as qp
2 with qp.build() as sched:
3 chan = qp.DriveChannel(0)
4 qp.set_frequency(100e6, chan)
5 qp.set_frequency(3.14, chan)
6 qp.play(qp.Constant(100, 1.0), chan)
7
8 print(sched)
9 "((0, SetFrequency(100000000.0, DriveChannel(0))), (0, SetFrequency

(3.14, DriveChannel(0))), (0, Play(Constant(duration=100, amp
=(1+0j)), DriveChannel(0))))"

Listing 6.1: Example of creating and printing a simple Qiskit Schedule.

159

The key idea behind the schedule conversion process is that there are 3 channels

of data that are contained in an OpenPulse schedule: Frequency, Phase, and Amplitude.

However, only the Amplitude channel will actually generate any output, so every other

data is effectively a “virtual” channel.

The algorithm to process the input schedule instructions is then the following:

1. Divide/distribute instructions by output channel.

2. For each channel:

(a) Group instructions by “virtual” channel.

(b) Process frequency & phase instructions: this creates a First-In-First-Out (FIFO)
queue, with each entry consisting of a struct containing: (instruction, current
value, instruction type (either set or shift), difference from previous value).

(c) Generate ToneData for each amplitude instruction:

i. Check frequency & phase: move to the next value in the queue if the am-
plitude instruction’s start time is after the current amplitude instruction’s
start time.

ii. Convert amplitude instruction to ToneData: This will generate a partially-
complete ToneData with only the amplitude specified.6

iii. Apply current frequency & phase to the amplitude ToneData.
iv. Apply other metadata such as triggers.

(d) Append ToneData to ChannelSequence for the given Channel.

3. Upload ToneData to the RFSoCs.

6Qiskit supports several types of pulse instructions, currently including Constant (square), Gaussian,
GaussianSquare (Gaussian ramp up/down with square pulse inserted in the middle for longer time at maxi-
mum power), and DRAG [126]. Of these, we have chosen to support all but DRAG.

160

Chapter 7: Experiments with Ion Trap Control System

7.1 Experiments Enabled by RFSoC Control System

The development of this entire control system has been incremental over time, but its use-

fulness has already been demonstrated in several experiments, including: demonstrating

logical qubits on a trapped ion quantum computer [39, 158], investigating measurement-

induced phase transitions [159], NMR simulations [160], and demonstrating interactive

protocols that could demonstrate quantum advantage [43]. The new capabilities added by

the RFSoC-based control system described in Chapter 5 have enabled and will continue to

enable using our ion trap quantum computer to demonstrate novel techniques and physics

experiments [161]. Specifically, the new features that primarily enable new experiments

and techniques are:

1. Simultaneous control of all output channels.

2. Selecting output pulses based on real-time communication.

This chapter will discuss the demonstrations and results that we have been able to

achieve using the control system and improved RF capabilities that we have discussed in

previous chapters.

161

7.2 N-Body Gates

One problem that faces near-term experimental quantum computers is a disconnect be-

tween the gates that they can demonstrate, and the theoretical capabilities of a quantum

computer. One of many consequences of this is in the gates and qubit connectivity that the

quantum computer has available. A given algorithm may be specified assuming any pos-

sible quantum gate/operation can be performed, but the operations that it expects might

not be able to be executed in a single “native” operation (see Section 2.6.3). If an op-

eration cannot be natively performed on a quantum computer, then a software algorithm

is often responsible for “decomposing” the nominal operation into native operations that

can be executed on the particular hardware.

One so-called “textbook” gate that is not typically available on quantum computing

hardware is a Toffoli gate [38, 162]. This is a gate that flips the state of a target qubit

only if the other qubits in the gate are in a given state (i.e. |1⟩), and is sometimes called

a CCNOT (Controlled-Controlled-NOT). It is heavily used for reversible digital logic in

quantum circuits, and plays an important role in many quantum algorithms [163, 164, 42,

165].

While the concept of a Toffoli appears to be similar to the standard textbook CNOT

gate, it actually takes significant overhead to implement compared to a CNOT gate [166,

167]. In the current NISQ [168] era, the overhead of ≈ 6× more gates means that

this gate is usually impractical because its use implies a significant fidelity tradeoff.

For example, because a Toffoli gate is optimally decomposed into 6× 2-qubit gates

162

(and some single-qubit gates) [166], 1, the resulting fidelity of a Toffoli gate will be

FToffoli ≈ (F2 qubit)
N2 qubit gates ≈ (F2 qubit)

6. If each of the 6 two-qubit native gates

has a fidelity of 98%, then the resulting equivalent Toffoli gate will have a fidelity of

≈ 88.5%. Even F2 qubit = 99% two-qubit gate fidelity will only produce ≈ 94.1% Tof-

foli fidelity. Thus, to enable running complex algorithms on a NISQ device, there exists

a need for high-fidelity multi-qubit gates, especially for Toffoli gates.

There are two approaches to achieving high-fidelity non-“textbook” multi-qubit

gates: special-purpose gates for precisely the Hamiltonian that you choose2; or a com-

position of high-fidelity basic operations such as the Clifford set, which can be combined

to produce any desired Hamiltonian. This trade-off between using “standard” vs “special-

purpose” gates at the compiler level has been explored previously [169, 170]. Here we

will consider a technique for creating one of these “special-purpose” multi-qubit gates for

a trapped ion quantum computer.

7.2.1 N-body Gate Scheme

To achieve high-fidelity N-body Toffoli gates, a different gate scheme is needed. Stan-

dard techniques such as the Mølmer-Sørensen gate (MS gate) [1, 131] only operate on

two qubits at a time. Other techniques are available for operating on multiple qubits

simultaneously [171, 172], but they are typically not extensible to arbitrary Hamiltonians.

A recent option that has been developed by our research group is a general N-

1We choose to neglect the fidelity of one-qubit gates because most modern systems are primarily limited
by their two-qubit gate fidelity. A standard one-qubit gate fidelity on the EURIQA Breadboard is about
99.5% fidelity [93], so it is reasonable for a rough estimate to only consider two-qubit gate fidelity.

2It should be noted that one potential downside of a custom “made-to-order” quantum gate is that it can
potentially require significant calibration effort, which can drift over time and require periodic re-updating.

163

body gate specific to trapped ions [173]. This technique modifies the standard Mølmer-

Sørensen gate, which is based on techniques from [1, 2, 3] (described in [93]). Remember

from Section 3.7.3 that a standard MS gate works by generating a spin-dependent force,

which excites collective motion in3 the chain of ions. Which direction that the “target”

ions move is then dependent on whether the qubit is in |0⟩ or |1⟩, which causes the “target”

qubits to accumulate different state-dependent phase that creates an effective RXX gate.

In our research group’s N-body gate concept developed in [173], the basic structure

is the same as the MS gate. However, Katz et al. make the insight that an MS gate only

excites motion at the first-order red and blue sidebands. If motion is instead excited at

the second-order sideband, then a quantum state-dependent4 squeezing or anti-squeezing

effect is produced. Similarly to an Mølmer-Sørensen gate, this squeezing effect is still

state-dependent and also generally insensitive to motional noise.

Pictorially (Figs. 7.1 and 7.2 (a)), the N-body interaction can be constructed out

of linear segments interspersed with alternating squeeze-antisqueeze segments, which

together create a rectangle in phase-space. The area of the rectangle then controls the

accumulated phase of the gate.

This concept is shown in Fig. 7.1. Note that the frequencies for Fig. 7.1 (c) are

twice as far from the resonant frequency as the frequencies in Fig. 7.1 (b). To create a

complete gate, there must be linear displacement segments to create some area (Fig. 7.1

(b)), which are then scaled by the squeeze-anti-squeeze segments shown in Fig. 7.1 (c).

3vibrates
4The more accurate representation would be that it is dependent on the spin state of the qubit, but in the

case of 171Yb+ the spin (|↓⟩/|↑⟩) maps directly to the quantum state (|0⟩/|1⟩).

164

0th
1st 2nd

q

p

x y

x y

0th
1st 2nd

q

p x y

x y

cba

Figure 7.1: Native N-body operations of a trapped-ion quantum processor. a, Linear chain of laser-cooled ion spins in a chip
trap. An array of optical beams addressing individual ions enable exquisite control over the state of each spin and its coupling to
collective phonon-modes using Raman transitions (additional global beam forming the Raman pairs not shown). b, Spin-dependent
displacement of one phonon-mode and its representation over the acoustic phase-space. Simultaneous driving of the first red and blue
sideband transitions of one ion near resonance with one phonon mode displaces the phonon wavepacket (gray Gaussian) into two distinct
trajectories, depending on the state of that spin along the X direction over its Bloch sphere (purple arrow). c, Spin-dependent squeezing
of one phonon-mode. Simultaneous resonant driving of the second red and blue sideband transitions of one ion and one phonon mode
squeezes (anti-squeezes) the phonon wavepacket along one direction of phase-space depending on the state of that spin along the x
direction. Thin-lines in the 2D plots of (b-c) represent the sideband spectrum and narrow red and blue Gaussians represent the spectral
content of the Raman coupling near the sidebands.

165

In Eqs. (7.1) to (7.3), we define:

• U is the unitary applied to the quantum system

• T is the total duration of the gate

• Φ̂seq is the gate phase accumulated by the entire waveform sequence.

• ξ is the squeezing factor applied, see [173, Eq. 4].

• ξ̄ is the mean squeezing amplitude, ξ̄ =
∑

i
ξi
N

• 1 is the identity operator on the quantum system.

• σ̂(i)
ϕi

is the Pauli spin-flip operator of spin i set by the average phase ϕi of the ith pair

of drives. σ̂(i)
ϕi

≡ σ̂
(i)
x cosϕi + σ̂

(i)
y sinϕi. ϕi can be thought of as the axis that phase

will be applied to: if the spin (qubit) is aligned to the axis ϕ, then a phase flip will

be applied.

• A, B are the displacement in the phase-space regime by position and momentum,

respectively. The multiple of these two factors is effectively the phase of the gate

when no squeezing is applied, for a gate that makes a square in phase-space, along

the lines of what was proposed in [131].

• T (n)
N is the N -qubit Toffoli, where the conditional spin flip is applied to the nth

qubit out of N total qubits.

The effective unitary that the gate sequence seq applies is:

Useq(T) = e−iΦ̂seq (7.1)

166

where

Φ̂seq = 2ABeξ̂ = 2AB
N∏
i=1

(
1 cosh ξi + σ̂

(i)
ϕi

sinh ξi

)
(7.2)

In the limit of ξi ≫ 1, Eq. (7.2) simplifies to:

Φ̂seq → 2ABeNξ̄
N∏
i=1

1

2

(
1+ ϕ̂

(i)
ϕi

)
(7.3)

When Eq. (7.3) is substituted into Eq. (7.1), the applied gate becomes the N -qubit

controlled-phase gate. If we let 2ABeNξ̄ = π, and add single-qubit RZ rotations on the

target qubit n, the resulting unitary is:

T
(n)
N = RZ

(n)
(π
2

)
UseqRZ

(n)
(
−π
2

)
(7.4)

The squeezing effect on momentum space relies exponentially on the number of

spins in the chosen basis ϕi, as can be seen in Fig. 7.2 (a). It is important to note that

only a moderate amount of spin squeezing is required to achieve a high-fidelity (≥ 99%)

CCNOT (T (3)
3 also known as the 3-Toffoli) gate using this scheme, as illustrated in Fig. 7.2

(b). The matrix representation of the CCNOT gate is:

167

T
(3)
3 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0



(7.5)

7.2.2 Executing N-Body Gate

To demonstrate the N-body interactions discussed in Section 7.2.1, we first consider the

conventional MS interaction between two ions in a chain of three ions. Following cool-

ing and spin initialization in the |↓(1)z ↓(3)z ⟩ (equivalently |0X0⟩, where X symbolizes an

unspecified state on the middle ion) state via optical pumping, we resonantly drive the

lowest-frequency radial phonon mode (“zig-zag” mode) with a sequence of displace-

ment operations that alternately act on the two edge ions (see Fig. 7.5 (a)), generating

a rectangular-shaped loop in motional phase-space as shown in Fig. 7.3 (a) [131].

The accumulated geometric phase corresponds to the phase-space area enclosed

in the loop, which is given by Φ = Φ0σ
(1)
x σ

(3)
x . We control Φ0 = α2 by scaling the

amplitude of the displacement pulses while fixing the total duration of the sequence to

about 180 µs. We suppress the displacement of other phonon modes by pulse-shaping of

168

Β𝑒
ത𝜉

Β𝑒−
ത𝜉 Β𝑒−3

ത𝜉

Β𝑒3
ത𝜉

ۧȁ↑↑↑ 𝜙

ۧȁ↓↓↓ 𝜙

ۧȁ↑↑↓ 𝜙

ۧȁ↑↓↑ 𝜙 , ۧȁ↓↑↑ 𝜙

ۧȁ↑↓↓ 𝜙

ۧȁ↓↑↓ 𝜙 , ۧȁ↓↓↑ 𝜙

Α

(a)

(b)

Φ

Α

Α

𝑇3
(3)

෤𝑝𝑚 ෤𝑝𝑚

෤𝑝𝑚෤𝑝𝑚

෤𝑥𝑚 ෤𝑥𝑚

෤𝑥𝑚෤𝑥𝑚

maximal oscillator squeezing [dB]

Figure 7.2: 3-body entangling gates (3-Toffoli) (a) Phase space evolution for three spins,
following the sequence of alternating spin-independent displacements and spin-dependent
squeezing operations. Each ion squeezes the momentum quadrature of the mth motional
mode by a factor e−ξ̄ if its spin points downwards (|0⟩), and anti-squeezes the momentum
quadrature of the mth motional mode by a factor e+ξ̄ if its spin points upwards (|1⟩). The
state-dependent phase-space area Φ̂seq accumulated in the evolution generates the gate
Useq = e−iΦ̂seq (Eq. (7.1)) with a maximal squeezing of the oscillator mode by a factor
eNξ̄ when all spins are aligned. The total area enclosed by the phase-space rectangle
depends on the number of spins along the axis ϕi: if 3 spins are along ϕi then the largest
rectangle is produced; if 2 spins are along ϕi then the next-largest rectangle is produced;
if 1 spin is along ϕi then the second-smallest rectangle is produced; if no spins are along
ϕi then the smallest rectangle is produced.
(b) Overlap between the many-body gate sequence from Eq. (7.2) (assuming the single-
qubit rotations from Eq. (7.4)), and the 3-Toffoli gate from Eq. (7.5). Inset: ideal T (3)

3

operator in the computation basis (|0⟩ & |1⟩).

169

the displacement waveforms [132] and also suppress the effect of uncompensated level

shifts using a pair of echo pulses (see Fig. 7.5). Application of this phase-gate jointly flips

the spins into the state |↑(1)z ↑(3)z ⟩ with probability p
(↑(1)z ↑(3)z)

= sin2 (Φ0), which is detected

via state-dependent fluorescence and displayed in Fig. 7.3 (a). We determine the scale of

Φ0 by fitting the data in Fig. 7.3 (a) to a sine function as a function of the Raman beam

intensity.

We extend the pairwise interaction by interspersing squeezing operations in the se-

quence that act only on the middle spin and predominantly drive the zig-zag phonon mode

(see Fig. 7.5b). These operations are realized as pairs of squeezing and anti-squeezing

pulses sandwiching the displacement operations (Fig. 7.3). The squeezing forces scale the

momentum displacements by the spin-dependent factor eξσ
(2)
x ≡ cosh (ξ)1+ sinh (ξ)σ

(2)
x

where 1 is the identity matrix, while nulling the net deformation of the phonon wavepacket.

The geometric phase is then given by the scaled rectangular area

Φ = Φ0

(
cosh (ξ)σ(1)

x σ(3)
x + sinh (ξ)σ(1)

x σ(2)
x σ(3)

x

)
, (7.6)

which includes two- and three-body interaction terms.

We demonstrate the action of this phase-gate in Fig. 7.3 (b-c) on the initial states

|↓(1)z ↑(2)x ↓(3)z ⟩ and |↓(1)z ↓(2)x ↓(3)z ⟩, for a total sequence time of less than 300 µs including all

displacement, echo and squeezing operations. Similar to the MS gate, this gate jointly

flips the state of the two edge spins, but with probability P
(↑(1)z ↑(3)z)

= sin2 (e±ξΦ0), whose

dependence on α2 is scaled by a factor eξ (e−ξ) and is conditioned on the state of the mid-

dle spin pointing upwards (downwards) along the x direction. The calculated evolution

170

ൿห↓1𝑧↓3𝑧

ൿห↓1𝑧↑2𝑥↓3𝑧

ൿห↓1𝑧↓2𝑥↓3𝑧

a

b

c

Φ0

Φ

Φ

Anti-squeezing

Squeezing

Figure 7.3: Demonstration of Quantum phase-gates on three ions. a, Mølmer-
Sørensen gate between ions number 1 and 3 using displacement operations of one phonon
mode using Milburn’s scheme [131] as illustrated in Fig. 7.2 (a). The phase-space area of
the enclosed rectangular contour Φ0 controls the spin evolution, jointly flipping the ini-
tial state |↓(1)z ↓(3)z ⟩ into the state |↑(1)z ↑(3)z ⟩. D(n)

q (α) and D(n)
p (α) denote position and mo-

mentum displacement operations. b-c, Interspersing spin-dependent squeezing operations
S(2)(±ξ) on ion number 2 in-between displacement stages along the p coordinate scales
the accumulated phase-space area Φ conditioned on the state of that spin (c.f. Eq. (7.6)).
(a-c), The phonon wavepacket is brought back to its original state at the end of the gate
operation to erase the spin-phonon correlations developed during the gate. Circles repre-
sent measured data, bars represent 1σ binomial uncertainties, and dash-dot lines are the
analytically calculated Unitary evolution for the system parameters estimated indepen-
dently. The applied experimental sequences are presented in Fig. 7.5 (a-b).

171

𝑈 = XXX
𝜋

4

a b

ۧȁ↓

ۧȁ↓

ۧȁ↓

ۧȁ↑

ۧȁ↑

ۧȁ↑

or

𝑅𝜃
𝜋
2

𝑅𝜃
𝜋
2

𝑅𝜃
𝜋
2

XXX
𝜋

4

Figure 7.4: Characterization of a three-body interaction gate. a, Truth table of
a three-body gate XXX(π

4
) = exp(−iπ

4
σ
(1)
x σ

(2)
x σ

(3)
x) gate generated by sequence of dis-

placement and squeezing operations. The input and output spin states are along the z
basis. Each input state is ideally mapped into a pair of output states (wire frames), and
raw measurement are shown in solid bars. The measured populations of these target states
is (95.8± 0.9)%, averaged over the 8 measured configurations. b, Parity measurement of
the output GHZ state for the two initial states |↓(1)z ↓(2)z ↓(3)z ⟩(light blue) and |↑(1)z ↑(2)z ↑(3)z ⟩
(red) with a fitted amplitude of 0.932±0.015 for the two states. The extracted GHZ fideli-
ties for this operation for the two states are F = (94.8± 1.5)% and F = (94.4± 1.9)%.
Bars represent 1σ binomial uncertainties and dashed lines are sine functions. The opera-
tion Rθ(π/2) denotes single qubit rotation by azimuthal angle θ and a polar angle π/2 on
the Bloch sphere.

172

of ξ = 0.27 agrees well with observation.

This many-body entanglement operation features full control over the amplitudes of

the two- and three-body terms appearing in Eq. (7.6). We can, for example, eliminate the

contribution of the two-body term by setting Φ0 = π/ cosh ξ and generate a pure three

body term with amplitude π tanh ξ. We note that maximally entangled states between

three spins in this case requires only 1 dB of squeezing (tanh ξ = 1
4
) [173].

173

/

b

c

𝐷𝑞(𝛼) 𝐷𝑞(−𝛼)ۧȁ↓ 𝑧

ۧȁ↓ 𝑧
𝐷𝑝(𝛼) 𝐷𝑝(−𝛼)

ۧȁ↓ 𝑧

a 𝑅𝑥(𝜋) 𝑅𝑥(−𝜋)

𝑅𝑥(𝜋) 𝑅𝑥(−𝜋)

𝐷𝑞(𝛼) 𝐷𝑞(−𝛼)ۧȁ↓ 𝑧

ۧȁ↓ 𝑧
𝐷𝑝(𝛼) 𝐷𝑝(−𝛼)

ۧȁ↑ 𝑥
𝑆(𝜉) 𝑆(−𝜉) 𝑆(𝜉) 𝑆(−𝜉)ۧȁ↓ 𝑥

𝑅𝑥(𝜋) 𝑅𝑥(−𝜋)

𝑅𝑥(𝜋) 𝑅𝑥(−𝜋)

𝑅𝑥(𝜋) 𝑅𝑥(−𝜋)

𝐷𝑞(𝛼) 𝐷𝑞(−𝛼)

ۧȁ↓ 𝑧
𝐷𝑝(𝛼) 𝐷𝑝(−𝛼)

ۧȁ↑ 𝑧

ۧȁ↑ 𝑧

ۧȁ↓ 𝑧

𝑅𝑥(−𝜋)

𝑅𝑥(−𝜋)

𝑅𝑥(−𝜋)

𝑅𝑥(−𝜋)

𝑅𝑥(𝜋)

𝑅𝑥(𝜋)

𝑅𝑥(𝜋)

𝑅𝑥(𝜋)

𝑆(𝜉) 𝑆(−𝜉) 𝑆(𝜉) 𝑆(−𝜉)

𝑆(𝜁) 𝑆(−𝜁) 𝑆(𝜁) 𝑆(−𝜁)

26 𝜇𝑠

44 𝜇𝑠

26 𝜇𝑠

26 𝜇𝑠

29 𝜇𝑠 29 𝜇𝑠

26 𝜇𝑠

26 𝜇𝑠

49 𝜇𝑠 49 𝜇𝑠

44 𝜇𝑠

13 𝜇𝑠13 𝜇𝑠

13 𝜇𝑠

13 𝜇𝑠

49 𝜇𝑠

49 𝜇𝑠 49 𝜇𝑠

Figure 7.5: Experimental N-Body gate sequences. a, Sequence of displacement op-
erations acting on the two edge ions and composing the MS interaction, enclosing a
closed rectangular loop in phase-space and generating the evolution Fig. 7.3a. b, Su-
perimposing spin-dependent squeezing operations on the second spin scales the displace-
ment generated by the third spin by a factor exp(σ

(2)
x ξ) and consequently also the en-

closed phase-space area. This sequence was applied to the configurations in Fig. 7.3
(b-c) and in Fig. 7.4 and Fig. 7.6 (a). c, Displacement of the edge two spins and si-
multaneous squeezing of the middle spins for the four ions configuration presented in
Fig. 7.6 (b). The simultaneous squeezing scales the displacement generated by the
fourth spin by a spin-dependent factor exp(σ

(2)
x ξ + σ

(3)
x ζ) as seen from the identity

S(m)(−ξ)D(n)
p (±α)S(m)(ξ) = D

(n)
p (±eσ

(m)
x ξα). The operators D(n)

p (±α) and D(n)
q (±α)

denote displacement of the target phonon mode via the nth ion by ±α along the p and q
coordinates respectively. S(m)(±ξ) denotes the squeezing operator acting on ion m and
R

(n)
θ (±π) denotes short single-qubit π-pulses acting on the n th ion, which commute with

the spin-dependent displacement operations and which correct for slowly-varying uncom-
pensated Stark shifts without altering the target state.

174

a b

Figure 7.6: Effective Hamiltonians with three- and four-body interactions. a, Evolution of three spins by the effective Hamiltonian
Heff = ℏΦ/T for Φ in Eq. (7.6) for the initial state |↓(1)z ↓(2)z ↓(3)z ⟩. The effective Hamiltonian comprises two- and three-body terms whose
magnitudes c2 = 1.03 and c3 = 0.23 as illustrated via the links connecting the different spins. The evolution as a function of Φ0 is
realized with a fixed sequence time. b, Evolution of four spins by the effective Hamiltonian in Eq. (7.7) containing simultaneously
two-, three- and four-body terms with amplitudes c2 = 1.1, c3a = 0.36, c3b = 0.31 and c4 = 0.1. Dot-dashed lines are the analytically
calculated magnetizations for the same initial state |↑(1)z ↑(2)z ↓(3)z ↓(4)z ⟩ where the c amplitudes are determined from the calculate squeezing
parameters. Bars represent 1σ binomial uncertainties. The applied experimental sequences are presented in Fig. 7.5 (b-c).

175

7.2.3 N-Body Gate Results

We perform a limited characterization of this pure three-body interaction by measuring

the output state distribution given each of the eight distinct three-qubit input eigenstates,

all in the Z basis. The ideal population distributions of the expected GHZ-type states are

equal weightings of the two complementary three-qubit states for each input state, shown

as wireframes in Fig. 7.4 (a). The measured spin population distributions are shown as

solid bars (see Fig. 7.7 for the numerical values), resulting in an average population fi-

delity of 95.8(9)%5, uncorrected for SPAM errors. We further measure the coherence in

this three-body mapping from two particular input states |↓(1)z ↓(2)z ↓(3)z ⟩ and |↑(1)z ↑(2)z ↑(3)z ⟩

into the expected GHZ states 1√
2
(|↓(1)z ↓(2)z ↓(3)z ⟩ ± |↑(1)z ↑(2)z ↑(3)z ⟩). We measure the entan-

glement of these particular GHZ states using the parity fringe witness observable [174]

as shown in Fig. 7.4 (b), and extract state fidelities F = 94.8(15)% and F = 94.4(19)%

respectively, uncorrected for SPAM. We estimate that the leading sources of errors are

technical, including noise in the beams’ amplitude, motional noise of the oscillator, and

uncompensated Stark-shifts.

Our scheme allows the realization of a continuous set of gates produced by the

unitary evolution under an effective Hamiltonian Heff = ℏΦ/T at an effective time T that

is independent of the actual gate time, but instead scales linearly with Φ0. We demonstrate

the evolution by the effective Hamiltonian associated with Eq. (7.6) for ξ = 0.23 and for

the initial state |↓(1)z ↓(2)z ↓(3)z ⟩, presenting the magnetization ⟨σ(n)
z ⟩ of each spin in Fig. 7.6.

The observed spin evolution manifests interference effects owing to the interplay between

5Here the notation 95.8(9)% indicates that there is an uncertainty of ±0.9% in the least significant digit,
i.e. 8

176

Figure 7.7: Raw measurement statistics for the XXX(π
4
) gate. The spins are along the

Z basis, corresponding to Fig. 7.4. The numbers are in percent, followed by 1σ binomial
uncertainties.

the two- and three-body terms in the Hamiltonian, and is in good agreement with the

analytically calculated evolution (dot-dashed lines).

We extend this technique to generate an effective Hamiltonian in a four-ion chain.

As in the three-ion gate, we act on two edge ions with displacement operations, while the

squeezing is performed simultaneously on the two middle ions with squeezing parameters

ξ and ζ as shown in Fig. 7.5 (c). Unlike the displacement operation that is linear in the

spin operators, the total scaling factor of the phonons, eξσ
(2)
x eζσ

(3)
x , is multiplicative in

the spin operators (Eq. (7.2)), owing to the nonlinear nature of the squeezing operation.

177

Therefore, we realize an effective Hamiltonian that is associated with the geometric phase

of the scaled rectangle:

Φ = Φ0

(
c2σ

(1)
x σ(4)

x + c3aσ
(1)
x σ(2)

x σ(4)
x

+c3bσ
(1)
x σ(3)

x σ(4)
x + c4σ

(1)
x σ(2)

x σ(3)
x σ(4)

x

) (7.7)

with two-, three- and four-body terms having relative amplitudes c2 = cosh ξ cosh ζ , c3a =

sinh ξ cosh ζ , c3b = cosh ξ sinh ζ and c4 = sinh ξ sinh ζ . In Fig. 7.6b we demonstrate the

evolution by this effective Hamiltonian for the initial state |↑(1)z ↑(2)z ↓(3)z ↓(4)z ⟩ and the applied

values ξ = 0.34 and ζ = 0.29, following calibration of Φ0. The evolution in this case

manifests interference between the four different terms in the Hamiltonian, and is in good

agreement with the theoretically calculated evolution (dot-dashed lines).

178

Chapter 8: Advanced Ion Trap Operations

Enabling new applications in trapped ion quantum computing will require advancements

in certain fundamental ion trap operations. Certain operations with ion trap quantum

computers are more advanced and exploratory than those covered in Chapter 3. These ad-

vanced operations will be useful for improving the state of the art in trapped ion quantum

computing, by enabling applications such as multi-species ion chains and logical qubit

operations. However, as these applications are still in the research phase, we have identi-

fied certain unaddressed problems that these applications will encounter. The remainder

of this chapter will discuss several of these operations that have not been fully studied, as

well as new contributions to each of these operations.

8.1 Ion Indexing

Executing quantum circuits on physical hardware typically requires a mapping from “vir-

tual” qubits to “physical” qubits. A physical qubit refers to a physical device that encodes

quantum information, and is subject to all the imperfections of a real system. In an ion

trap system, this is effectively a single ion in the chain.1 On the other hand, virtual qubits

are qubits specified in a given circuit. Virtual qubits are specified without regards to any

1More accurately, the atomic spin of a single ion in a chain.

179

physical limitations, such as the underlying fidelity of the physical quantum gates that

will be executed.

For example, suppose that a 5-qubit ion trap quantum computer executes the fol-

lowing Bell circuit:

q[0]
q[1]

H

When the quantum computer executes the two-qubit circuit, some sort of compiler

will assign two of the five physical qubits to execute the quantum circuit. Thus the follow-

ing two example representations of this circuit below are equally valid from a conceptual

perspective, though they are different in their physical execution.

q[0]
q[1]
q[2]
q[3]
q[4]

H

q[0]
q[1]
q[2]
q[3]
q[4] H

Given the difference between physical and virtual qubits, it is important that a phys-

ical qubit conveys meaning about the physical state of the system. Trapped ion quantum

computers have a unique opportunity to convey physical meaning through the index.

Typically, qubits have one of two numbering schemes: zero-indexed or one-indexed.

These indexing schemes are straightforward. Indices are assigned beginning with zero

(one), and then continuing with all integer (whole) numbers from there. These number-

ing schemes are illustrated in Figs. 8.1a and 8.1b.

180

0 1 2 3 4

(a) Zero-index ion notation

1 2 3 4 5

(b) One-index ion notation

-2 -1 0 +1 +2

(c) Center-index ion notation
(odd number of ions)

-2 -1 +1 +2

(d) Center-index ion notation
(even number of ions)

Figure 8.1: Ion Physical Qubit Indexing Options These indexing schemes are illus-
trated for ion chains ofNions ∈ {4, 5}, though they can be extended to an arbitrary number
of ions. For new systems under development, we recommend solely using center-index
notation wherever possible, though the other indexing options might still be desirable in
certain use cases. Some examples include when working with certain quantum circuit
packages such as Qiskit, which does not support negative qubit indices natively.

These rudimentary indexing schemes have a few inconveniences that arise in situa-

tions that we regularly encounter on our EURIQA Breadboard system. These include:

• No support for changing number of qubits: The number of ions (physical qubits)

in an ion trap quantum computer changes relatively often. In a room temperature

ion trap, such as EURIQA Breadboard, collisions with background gases can cause

ions to be ejected from the chain, leaving only a few ions post-collision where there

might have been a dozen before the collision. 2 For example, if the center ion

in a chain of 15 is labeled as 7 (zero-indexed), and then a chain loss event occurs

where only one ion remains, its index will suddenly change from 7 → 0, while still

retaining approximately the same position (and thus laser beams, etc).

• Doesn’t convey symmetry: Many operations and issues in ion traps are a function of

the ion’s position in the chain. These operations also are usually symmetric relative

to the ion’s position in the chain, such as crosstalk or multi-qubit gate waveforms.

2In cryogenic traps, the number of ions present will generally not change due to background collisions,
but primarily due the experimental physicist’s desire to use a different number of ions for a given quantum
algorithm.

181

The zero-index and one-index notation do not convey this information, without

extra information about the number of ions in the chain, and even then still require

mental math to understand this symmetry.

8.1.1 Center-Ion Indexing

The solution that we created to solve both of these issues is to use a “center-indexing”

scheme, illustrated in Figs. 8.1c and 8.1d. This scheme assigns ion indices as follows:

• For odd numbers of ions: The center ion is assigned to 0. The next ion to the right

of index 0 is assigned +1, while the next ion to the left of index 0 is assigned −1. 3

This process continues until all qubits are assigned indices.

• For even numbers of ions: There is no center ion, so the center-most ions are as-

signed −1 and +1 for the left and right sides, respectively. The left side is then

assigned indices from −2 until the end of the chain, and the same process with the

right side beginning at +2.

The idea is that the center ion will always be denoted as 0 (if even), and then ion index

denotes distance from the center of the chain while showing symmetry. For example, if

a chain loss event happens and only a single ion is left, then Ion 0 will refer to the same

physical location both before and after the ion loss event. This also has the advantage of

the same ion index referring to the same ion position, regardless of number of ions (as

long as the same parity is maintained), as well as conveying information about symmetry,

as it is clear that e.g. ±1 refers to opposite ions relative to the center.
3We do not specify how the orientation of “left”/“right” are specified, as that should be determined by

the physical system and its designers.

182

Conversion between the different indexing schemes can be calculated as a function

of the number of ions. We let:

• Nions be the number of ions in a chain (or the number of indices allowed).

• IC be a center-indexed ion position (index). E.g. {−2,−1, 0, 1, 2}. Correspond-

ingly, ICeven/odd
(IZ , Nions) denotes the equivalent center index for a zero-indexed

position, when the number of ions Nions is either even or odd. 4

• IZ is an index in zero-index notation. Then IZ(IC , Nions) is the zero-indexed equiv-

alent of a given center-indexed ion index.

The index conversions are then calculated as:

ICodd
(IZ , Nions) = IZ −

⌊
Nions

2

⌋
(8.1)

ICeven(IZ , Nions) = ICodd
(IZ , Nions) +


1, ICodd

(IZ , Nions) ≥ 0

0, otherwise

5 (8.2)

IZ(IC , Nions) =


IC +

⌊
Nions

2

⌋
, if IC mod 2 == 0, or IC mod 2 == 1 & IC < 0

IC +
⌊
Nions−1

2

⌋
, otherwise

(8.3)

4Remember that even/odd can be calculated as IC mod 2. Even is IC mod 2 == 0, and odd is IC
mod 2 == 1

5The conditional addition here is to prevent the index 0 being assigned as a potential index.

183

8.2 Ion Split-Merge Overview

There is a certain level of basic capability of working with chains of ions that are nec-

essary to demonstrate for minimum functionality: the ability to shuttle an ion through

a junction on a surface trap[175, 105], construct chains of arbitrary size, and load ions.

After these capabilities are demonstrated, another desirable feature is the ability to split

and merge a chain into any permutation of the component ions. This capability has been

considered at the architecture level before [176, 177], but needs more research at an im-

plementation level.

While there is a wealth of physics involved in implementing this operation [178],

here we will mostly be focusing on the system requirements needed to implement these

operations. We also discuss some of the building blocks of a chain split-merge operation

to consider how certain other operations that we would like to implement are modifica-

tions to the basic structure of a split-merge operation.

The goal of a chain split-merge operation is to isolate a subset of all the ions in

the chain (called here a subchain), and then re-integrate those ions into the overall chain.

This process is generally accomplished by modulating the ion trap DC voltages to create

voltage potentials that move the ion chain, physically, in specified sequences. While the

process of generating these voltage sequences (sometimes called voltage solutions) is

nontrivial, here we will assume the correct sequence can be generated and then output

exactly as desired, neglecting any imperfections in the trap voltage DACs and the filter

boards.

First, we must first define some terms to clarify split-merge operations. Remember

184

that a chain of ions (Nions ≥ 1) is trapped in a voltage potential well that confines the

ions. This voltage potential can be “moved” (i.e. the shape of the voltage potential can

be translated by manipulating the trap DAC voltages), or modified to affect the positions

of the ion chain residing in the well. For simplicity, we will abstract away the voltage

potential well to only consider the ion chain that resides in the well. 6 We define the ion

chain of size Nions as CNions
. We define split operations on a chain CNions

as occurring

between the j-th and (j+1)-th ions, denoted by SNions,j .
7 Finally, we abbreviate a merge

operation between two chains {Ck, Cl} as MCk,Cl
.

With this simplification, we can then consider the order of operations to execute the

following split-merge operation in an example 3-ion chain (using center-index notation):

C3 → S3,−1 → (C1, C2) →MC1,C2 → C3.

1. Create minuscule voltage barrier between ions (j, j + 1), i.e. (−1, 0).

2. Increase voltage barrier, until the split occurs.

3. Move new sub-chains apart. This marks the end of the split operation, as the two

chains C1, C2 can now be moved independently without affecting the other.

4. Move sub-chains back together. This marks the beginning of the merge operation.

At this point, there is essentially a finite-height barrier between these chains (i.e.

the voltage wells), which will need to be lowered to merge the two chains.

6Calibrations will usually need applied to these wells, especially as the number of ions in a well in-
creases. In this regime, the ions are more sensitive to the background electric fields, which can lead to
undesired effects such as the ion spacing changing. This can also cause a previously-effective voltage
sequence for splitting an ion chain no longer splitting the chain between the desired two ions.

7Either center-index (Section 8.1) or zero-index notation will both be valid here for j, though we will
use center-index notation to convey chain symmetry.

185

5. Lower barrier height until the two chains C1, C2 merge.

With this foundational sequence, we can add layers of complexity to execute certain

operations that quantum information theory omits.

8.3 Ion Chain Sorting

The first of these operations is the problem of sorting (or re-ordering) an ion chain into

the desired configuration, which is typically required after a collision with a background

gas particle scrambles the chain. In other words, this problem is ensuring that the chain

has the desired ordering of ion species. This is a relatively recent problem, because many

prior trapped ion quantum computers were only working with a single ion species (i.e.

isotope) and small numbers of ions. 8

A second set of ion species is typically desired for reducing the motional energy

of the chain (i.e. cooling) via e.g. Doppler cooling of a second ion species. Thus we

sometimes call these coolant ions. This might be particularly useful for long quantum

computations (to cancel the background heating rate of the ion trap), or to achieve high

fidelity gates after operations that add motional energy to the chain such as a split-merge

or shuttling operation.

Remember that with only a single ion species, every ion is effectively identical, so

not only is there any deterministic way to tell if the ion chain has re-ordered, but the chain

will never need to be re-sorted. 9

8For small numbers of ions, a sorting operation is actually not required because the voltage potential
well can be squeezed (increasing the slope of the barriers), which will cause the chain to reconfigure so that
the lighter ions are towards the outside [179].

9The one exception to this is when a collision with a background gas particle causes an ion to “go dark”.
In this context, “go dark” means that the ion does not emit fluorescence on the cycling transition described

186

However, when a second (or more) ion species is introduced, the ordering of ion

species now matters. The primary effect of different chain configurations is that it will

change the vibrational mode structure and participation ratios. 10 In turn, this changes the

gate waveforms that need to be played back to execute a gate between any pair of ions

[179]. Thus, if a chain reordering event occurs, there are two choices:

• Do nothing: continue operating with the current chain configuration.

• Sort the chain: reorder the chain into the desired ion configuration.

To be able to analyze these approaches, we need to consider chain sorting operations

in more depth.

Defining a few terms: Nions is the total number of ions; ntype1, ntype2, . . . are the

number of ions of each different species (with the constraint that Nions =
∑

type ntype).

Using discrete mathematics principles, we can determine that the number of unique or-

derings of a chain of Nions with a given number of ions of different species (i.e. different

groups/types) is:

ONions,ntype1=X,ntype2=Y,... =
Nions!∏

type (ntype!)
(8.4)

For a simple chain of 3 ions, with ntype1 = 1, ntype2 = 2, then O3,ntype1=1,ntype2=2 =

3!
2!1!

= 3. For a 15-ion chain, which is roughly the scale that we have used for logical

qubit operations, there are an order of magnitude fewer possible chain configurations by

increasing the ratio of type 1 to type 2 ions (i.e. increasing the ratio of computational ions

in Section 3.6.3. We have hypothesize that the most common cause of “going dark” is the ion transitioning
into the low-lying F state (2F7/2) due to a collision. Interestingly, we can intentionally use these “dark”
ions to measure the rate of reordering collisions.

10A secondary effect is that the mapping of control sources (e.g. gate waveform sources) to ions will
need to change in real-time to only control the physical qubits used in computations, instead of the coolant
ions.

187

to coolant ions).

O15,ntype1=8,ntype2=7 =
15!

8!7!
= 6435 (8.5)

O15,ntype1=13,ntype2=2 =
15!

13!2!
= 105 (8.6)

8.3.1 Chain Sorting Operation

To sort an ion chain into a desired configuration, several steps must happen in sequence.

This sequence builds on the split-merge operation from Section 8.2 by performing two

sequential splits, and then performing a swap operation between the two remaining ions.

To be more specific, the sequence for a single swap is as follows, assuming a chain of

Nions ≥ 4, and that the ions that should be swapped are ions (i, i + 1) in zero-index

notation:

1. Split 1: Split the chain between ions (i−1, i), yielding two new subchains of lengths

i and Nions − i (i.e. SNions,i−1 → (Ci, CNions−i)). Note that this step is unnecessary

if the ions to swap are the 0th & 1st ions.

2. Split 2: Split the right subchain CNions−i between (in original whole-chain number-

ing) i + 1, i+ 2. Symbolically, this is the operation SNions−i,2 → (C2, CNions−i−2).

Now there are three subchains: Ci, C2, CNions−i−2. 11

3. Swap: For the C2 chain, reverse the order of the two ions so that (i, j) → (j, i).

This still leaves C2 (a subchain of 2 ions).
11Similarly, this step is unnecessary if the ions to swap are the last two ions.

188

4. Re-merge 1: Re-merge the left subchain with the middle subchain: (C2, CNions−i−2) →

MC2,CNions−i−2
→ CNions−i.

12

5. Re-merge 2: Re-merge the left subchain with the right subchain: (Ci, CNions−i) →

MCi,CNions−i
→ CNions

.

Note that this operation is symmetric, so the voltage sequence for each split can the-

oretically be run in reverse to produce the equivalent merge operation. We will abbreviate

this swap operation as Swapi,i+1.

Once a basic swap operation can be executed between any pair of ions, that opera-

tion can now be integrated into a sorting algorithm to produce a desired chain ordering.

Fortunately, the computer science community has invested much research into sorting al-

gorithms, which we can take advantage of. However, ions have the constraint that they

are a physical item, and they cannot be swapped between arbitrary indices in an array as

digital information can. In other words, to sort {2, 1, 0}, you must perform the operations

Swap(1, 0) → Swap(2, 0) → Swap(2, 1); this cannot be done in a single operation for a

chain of ions.

Thus, to actually sort a chain of ions to the desired configuration, it is important to

select a sorting algorithm that is near-optimal with respect to the total number of swaps

that need performed. This is a different constraint than most sorting algorithms, which

tend to emphasize performance as a function of the number of elements to be sorted.

When sorting an ion chain, the number of elements to sort is fixed, but their configuration

is unknown until the time of the sort. We choose to emphasize the total number of swaps

12This re-merge can be performed either before or after re-merge 2.

189

to be performed as the metric for selecting an algorithm, because the number of swaps is

a primary factor in the equation for determining how long it will take to sort an ion chain.

The time to sort an ion chain can be approximated as

ttotal sort = tcalculate swaps + (tread configuration + tswap)

∗(nswaps ∗
1

successswap
) + tread configuration

(8.7)

In this equation, we define:

• ttotal sort: total time to perform a sorting operation.

• tcalculate swaps: time for a CPU to calculate the sequence of swaps to change from

the initial chain configuration to the desired chain configuration.

• tread configuration: time for the ion chain configuration to be recorded. We assume

that this is performed after every swap to confirm the swap, though this frequency

could be reduced to decrease the total measurement time. This operation will typ-

ically look very similar to the measurement operation described in Section 3.6.3,

except Doppler cooling of a single ion species is used instead of only reading out

|1⟩, and non-computational ions are determined by appearing as “dark” (no fluores-

cence). A final configuration check is performed at the end to confirm the success

of the sorting operation.

• tswap: time to execute the swap operation Swapi,i+1.

• nswaps: total number of swaps to execute in the ideal case, as calculated during

tcalculate swaps. This is determined by the sorting algorithm.

190

• successswap: We assume some failure rate for the swap operation to provide a

margin of error. We constrain successswap ≤ 1.0.

Because most of these times are constrained by physics and the system design (such

as the swap time), we focus here primarily on the number of swaps (nswaps) because that

has not been researched elsewhere. By selecting an effective algorithm, it should be

possible to reduce nswaps to the minimum amount of time possible. Once we select an

algorithm, it should also be possible to simulate how the number of swaps varies with the

number of ions in a chain, as well as different ratios of ion species.

8.3.2 Chain Sorting Algorithm

We selected the Merge Sort algorithm [123] for generating the number of swaps, and

then performed simulations on the total number of swaps with various configurations of

number of ions in a chain and the ratio of coolant ions to computational ions. The Merge

Sort algorithm is especially useful here because all of its operations are mostly local, and

it has good worst-case performance of O (Nions logNions). 13 14

Using the Merge Sort algorithm as a base, we need to perform the following modi-

fications so that it can match the needs of sorting an ion chain:

• Generate ion ordering: this step assigns a unique index to each ion, determining

where it should fall in the sorted ion configuration. This algorithm works as de-

scribed in Listing 8.1.
13The standard Merge Sort algorithm does not specify that all of its operations are local (only on neigh-

boring data). However, it is relatively trivial to modify the merge operation to only perform nearest-neighbor
swaps, without increasing the asymptotic runtime of the algorithm.

14Restricting operations to only nearest-neighbor swaps changes the problem into calculating the inver-
sions in a list [180].

191

• Return inversions: Unlike many sorting algorithms, the goal of the Merge Sort

algorithm in this context is to return the required swaps, instead of the sorted ion

configuration. Thus, the Merge Sort algorithm is modified to record every nearest-

neighbor swap performed (in order) when sorting the input, and then return that

sequence.

1 generate nominal (i.e. sorted) chain configuration
2 group nominal configuration by ion type (one sequence per type)
3 Read chain configuration
4 sorted_indices = list()
5 for each ion_index, ion_type in enumerate(chain):
6 correct_index = next index from nominal configuration for

ion_type
7 sorted_indices.append((ion_index, correct_index))

Listing 8.1: Pseudocode for assigning sorted ion indices to an arbitrary chain
ordering.

8.3.2.1 Simulation Methodology

We performed simulations to calculate the number of swaps needed to produce a desired

chain configuration. The goal was to understand how the number of swaps required to

reorder into the desired configuration would scale with the number of ions and the ratio

of computational to coolant ions.

We began by initializing different chain configurations, with varying numbers of

ions (Nions) and ratios of computational to coolant ions ntype1 : ntype2 (sometimes we

use 1
n

to denote the fraction of total ions Nions that are type2). 15 For each “round” of

simulation, we randomly shuffle the ions of a chain configuration, assign a target index

15For Nions that is not evenly divisible by ntype1 + ntype2, any remaining unassigned ions are assumed
to be of type1. For example, 1

4 coolant with Nions = 4 is 3 computational ions and 1 coolant ion, while
Nions = 5 will have 4 computational ions and 1 coolant ion.

192

to each ion (illustrated in Fig. 8.2b, using the algorithm from Listing 8.1) 16, and then

calculate the number of swaps/inversions as previously described.

By repeatedly scrambling and then sorting the chain, we can construct a histogram

of the number of swaps needed to reorder a chain. Results from these simulations will be

shown in Section 8.3.2.2.

This approach has some assumptions that might differ from a physical trapped ion

experiment:

• Expected ion ordering: This simulation assumes purely random ordering after a

reordering collision, which has not been statistically demonstrated in ion chains.

• No further collisions: We assume that another reordering collision will not oc-

cur during the sorting sequence. Functionally, this means that we assume the

sort duration is much less than the interval between reordering collisions: tsort ≪

intervalreordering collisions, which might not hold true for a given experiment.

8.3.2.2 Simulation Results

We simulated the dependence of the number of swaps as a function of the number of ions

in the chain, as well as various ratios of computational to coolant ions.

One example of the simulation for a given number of ions and ratio of computa-

tional to coolant ions is given by Fig. 8.3. This is essentially simulating reordering the

25-ion version of Fig. 8.2a.
16This algorithm is straightforward: you can essentially store a sorted queue of correct indices for each

type of ion. You then iterate through the scrambled ions, and assign scrambled ions the smallest index from
the queue (pop) for the corresponding type. There are likely more-efficient algorithms for this task, but this
efficiency is OK for the relatively small scale considered here.

193

-2 -1 0 +1 +2

(a) Desired chain configuration.

-1 1 -2 0 +2

(b) Example scrambled configuration. Ions are
labeled with the “destination” index, which is

the index after sorting into the desired
configuration.

Figure 8.2: Example auto-generated ion chain configuration forNions = 5. Diagonal-
line-filled ions denote computational ions, and vertical-line-filled ions denote coolant
ions. This example has a Computational : Coolant (ntype1 : ntype2) ion ratio of 2 : 3.
When generating chain configurations from coolant ratios, this chain configuration would
be represented by the 1 : 1 ratio (or 1

2
coolant), due to the odd number of ions. This

is demonstrated with 5 ion chain, but the same method applies to larger ion chains. The
scrambled configuration shown in Fig. 8.2b is one of the possible permutations (described
by Eq. (8.4)). This scrambled configuration is also the worst-case configuration for the
original chain configuration, as it has the maximum number of swaps (inversions) needed
to achieve the desired configuration in Fig. 8.2a: 3 swaps.

While the number of swaps appears reasonable for the length of ion chain that we

are currently considering, we should also ensure that this scheme is scalable to the number

of ions that we might reasonably expect to have soon. We can simulate this by varying

the length of ion chains that we consider, shown in Fig. 8.4.

In our simulation, we can also vary the ratio of computational to coolant ions, as

shown in Fig. 8.5. For an example 25-ion chain, we observe approximately a factor of two

improvement in the average number of swaps needed to sort the chain. While significant,

this is not enough to negate the exponential scaling seen in Fig. 8.4.

8.3.3 Comparison of Recalibration vs Sorting Time Cost

As previously stated, different chain configurations will have different motional mode

spectra. In multi-qubit gate schemes that rely on entangling ion spin with the motional

194

0 10 20 30 40 50 60 70
Number of Swaps to Reorder

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

Number of Swaps to Reorder 25-ion chain
(1:1 computation:coolant)

Figure 8.3: Simulation of the number of swaps to reconfigure a randomly-scrambled
25-ion chain, with 1 : 1 computational to coolant ion ratio. This is shown as prob-
ability to reflect the random nature of the chain scrambling. Note that the tail of the
distribution goes out to almost 70 swaps, approximately a factor of 3.5× more than the
average case.

195

0 200 400 600 800 1000
Number of ions

0

1000

2000

3000

4000

5000

Av
er

ag
e

nu
m

be
r o

f s
wa

ps
Number of swaps to reorder a N-ion chain

(1:1 computation:coolant)
0.17 * x1.49

(a) Plot of Nions ∈ [1, 1000]

10 15 20 25 30 35 40
Number of Ions

0

10

20

30

40

50

Av
er

ag
e

nu
m

be
r o

f s
wa

ps

(b) Zoomed in on Nions ∈ [15, 40]

Figure 8.4: Simulation of the number of swaps to reconfigure a randomly-scrambled
N-ion chain, with 1 : 1 computational to coolant ion ratio. For simplicity, the results
here are plotted as the average of all simulations for a given number of ions. The simula-
tion results (dots) are fitted to an exponential curve: 0.17 ∗ Nions

1.49. Each data point is
the result of simulating the number of swaps required to reorder 1000 random scrambling
events. This shows that we expect this method to scale exponentially with the number of
ions, so it might not be applicable to extremely long chains of ions. Fig. 8.4b is the same
as Fig. 8.4a, just zoomed into the length of ion chains that are currently practical.

196

0 10 20 30 40 50 60 70
Number of Swaps to Reorder

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ob

ab
ilit

y

Swaps to Reorder Scrambled 25-ion Multispecies Chain
1:1
3:1
5:1
7:1

Figure 8.5: Effect of ratio of computational to coolant ions on the number of swaps
needed to sort a scrambled 25-ion chain. Number of trials per coolant ratio is 100000.
Each line is the bars from Fig. 8.3, but plotted as a line instead of a bar for visibility.
Note that as the ratio of computational to coolant ions increases, the observed “tail” also
decreases, implying that the worst-case number of swaps also decreases (or is at least
made more unlikely).

197

modes of the ion chain, this will cause different ion chain configurations to require dif-

ferent “gate solutions”, i.e. sequence of pulse modulations to achieve a given multi-qubit

gate unitary [133, 93]. Thus, each chain configuration will require a different set of “gate

solutions”, which can be pre-computed as there are a finite number of chain configura-

tions.

However, beyond just computing, storing, and loading gate solutions for every pos-

sible chain configuration, the issue becomes one of calibration. For each chain configu-

ration, assume that the gate set 17 will need to be re-calibrated after a reordering event. 18

Let us consider the execution time tradeoff between the two primary approaches: using

an arbitrary (after a reordering event) chain ordering; and sorting the chain into a desired

configuration.

tsort = tdetect +

(
(tdetect swap + tswap) ∗Nswaps ∗

1

reliabilityswap

)
+ tdetect (8.8)

trecalibrate = tdetect + (N2Q gates ∗ tgate calibration) (8.9)

We can use our knowledge of our system to substitute in reasonable estimates for

each of these, even assuming a smaller-than-realistic trapped ion system with only 8

17The set of all possible gates between each ion. Primarily referring to 2+-qubit gates as those use the
motional modes for multi-qubit operations, while single-qubit gates do not. This makes multi-qubit gates
sensitive to the ordering of a multi-species ion chain.

18We typically find that we need to recalibrate gates every intervalrecalibrate ≈ 3 h. Thus the only way
that this assumption would be invalidated is if the chain reorders into the same configuration twice in a 3-
hour window. This is exceedingly unlikely for a chain of 15 ions, assuming random scrambling/reordering.

198

qubits to reduce the number of two-qubit gates in favor of the recalibration approach:

tdetect = 200 µs

tdetect swap = tdetect = 200 µs

tswap = 20ms

reliabilityswap = 80%

Nswaps = 50

N2Q Gates =

(
Nqubits

2

)
=

(
8

2

)
=

8 ∗ 7
2

= 28

tgate calibration = 1min

Thus, we can estimate tsort & trecalibrate:

tsort = (2 ∗ 200 µs) +
(
(200 µs + 20ms) ∗ 50 ∗ 1

0.8

)
≈ 1.3 s (8.10)

trecalibrate = 200 µs + (28 ∗ 1min) ≈ 28min (8.11)

Even with somewhat-conservative estimates for reordering times (i.e. imperfect

swap reliability, checking each swap, etc), it is still approximately 1000× faster to reorder

the ions into the desired chain configuration versus recalibrating the gates. In short, if high

fidelity gate operations are the goal, then it should be faster to sort the chain of ions into

the desired configuration instead of attempting to re-calibrate.

199

8.4 Ion-Photon Entanglement Generator

One project that we developed was aimed at quantum networking, as opposed to the quan-

tum computing focus that the remainder of this thesis focuses on. Quantum networking

experiments are generally aiming to create a “quantum internet”, with quantum informa-

tion freely flowing between distributed nodes. This idea builds on the concept of quantum

teleportation.

A quantum network requires the “resource” of entanglement to operate. The com-

munication rate of a quantum network is limited to the number of shared entangled states

that they can create (e.g. Bell pairs). Thus, many research groups are aiming to demon-

strate high rates of entanglement generation.

Generating entanglement requires reliably generating single photons that can be in-

terfered on a beamsplitter. However, even if single photons can be reliably generated, the

photons’ wavepackets must still overlap in space so that they can be entangled, which has

tight timing requirements. And once entanglement is generated, care must be taken to

ensure that the quantum state is not destroyed/collapsed via measurement, so an entan-

glement witness is observed to verify if entanglement has occurred. 19

Finally, a device is needed to sequence all of the required operations to attempt to

generate entanglement, and continue attempting to generate entanglement until success is

heralded. This is a fairly unique set of requirements. The sequencer must be able to:

• Output very short pulses: typical pi-times for these systems are on the order of

19Entanglement witnesses are sometimes also called heralds. Entanglement is generally heralded by a
specific pattern of photon detectors registering inputs.

200

10 ns.

• Pattern-match to confirm that a desired entanglement herald has been detected.

• Repeat quickly: the control device should introduce as little overhead into each en-

tanglement attempt loop as possible. This and the short pulse requirement preclude

most CPU software for generating and detecting entanglement.

• Exit at undetermined time: similar to an interrupt, once entanglement is success-

fully generated, control flow should return to the standard quantum sequencer so

that any further quantum operations can be executed.

• Integrate into roughly-standard lab equipment.

I decided to implement this system based on an example design produced by an

ion trapping group at the University of Oxford [181, 182, 183, 184, 185]. This system is

effectively a semi-autonomous gateware block state machine within the ARTIQ FPGA,

called entangler-core. 20

The idea is that this core is dormant when not in use. When in use, it usurps control

over the required inputs/outputs. It begins by outputting a sequence of digital signals to

the desired channels for a given window, which collectively generate photons from both

sets of ions. Then it monitors the input hardware interface blocks (PHYs) for incoming

edge signals, rejecting any that fall outside of the expected time window. If the input pat-

tern of signals does not match the desired pattern, it resets and again attempts to generate

20This gateware block was actually entirely programmed in Python, using a domain-specific language
(DSL) called migen (as well as the misoc library). Using migen is practically required to integrate
similar functionality into the gateware for an ARTIQ FPGA. The source code for this feature can be found
at https://github.com/drewrisinger/entangler-core.

201

https://github.com/drewrisinger/entangler-core

entanglement, looping until a certain number of entanglement attempts has occurred. If

the input pattern does match the desired pattern(s), then it determines that entanglement

has (probably) occurred, and it ends executing the loop. Control then returns to the stan-

dard ARTIQ processor, which determines the appropriate action to take. 21

This feature has been demonstrated as fully functional via benchtop testing. How-

ever, its full use in a quantum context in our group has not been demonstrated due to the

difficulties of hardware-based physics experiments.

21The entangler-core also includes configuration registers, which allow modifying most of the capabili-
ties described here. For example, the herald pattern(s) can be modified between runs of the entanglement
generator, or the pulse timing can be modified.

202

Chapter 9: Outlook

Trapped Ion Quantum Computers are a leading candidate for developing large-scale quan-

tum computers, with notable benefits of long coherence times and high fidelity operations.

Our recent work [39] has demonstrated the feasibility of using trapped ions for logi-

cal qubit-scale trapped ion quantum computers, using single chains of ions. From here,

the field will likely move in some combination of several research focuses: increasing

chain length, moving chains of ions around an ion trap in the Quantum CCD architec-

ture ([105]), and incorporating photonic interconnects [186] for distributed entanglement

across multiple “processors”.

At this point, the fundamental physics of each of these concepts has been explored

in the literature; the next step is engineering and development. This thesis has explored

some of the implementation & engineering challenges that each of these capabilities will

require, and our initial work of engineering for these future research directions.

The problem that the quantum computing field currently faces is transitioning quan-

tum computers from physics lab experiments to commercial products. This requires a

fundamental re-consideration of today’s quantum computers; the many details of quan-

tum computing at small scale (≈ 10 qubits) very well may not work at a scale of 1000 or

1 million qubits. Problems such as “Which qubit are we referring to? And what qubits

203

can it perform operations on?”, which are trivial when there are only a handful, become

significantly more complex when this information is too large to be stored in a few bits.

Accompanying this paradigm change will come a shift in perspective, from considering a

handful of qubits as the “norm” to considering them an exception or a special case.

In the intermediate term, there will still be a strong need for improved control hard-

ware and software stacks to enable these changes; near-term quantum computers will still

need some form of waveform generator to perform gates, and photonic interconnects will

require hardware acceleration to achieve high entanglement generation rates. We look

forward to seeing the next generations of quantum computers incorporating these and

many other building blocks.

204

Appendix A: Python: Distribution and Best Practices

A.1 Python Overview

Python is a programming/scripting language that is relatively popular in the scientific

community. Some key features that drive its popularity:

• Readability: Python code is relatively straightforward for non-programmers to read

and write. For example, a hello world program in Python looks like Listing A.1.

• Libraries: Python has a variety of libraries (similar to a plug-in) that offer a wide va-

riety of basic functionality in a plethora of scientific and numeric disciplines. Easy-

to-use libraries exist for many tasks, which speeds up development times when

starting out.

• Simplicity: Python is both simple-to-read and simple-to-write. While it has a great

depth of features and extensions, beginners can ignore most of these and get started

with code that “just works”, without having to worry about the mechanics of com-

piling their code.

• Cross-Platform: Python is generally platform-independent, so software that is writ-

ten on Linux will work equally well on Windows or MacOS (generally). This is a

205

good fit for labs that are not standardized on a single operating system, or require a

specific operating system for compatibility with a specific piece of hardware.

• Maturity: Python was begun in 1989. Since its inception, the majority of bugs have

been resolved, many beginner-friendly tutorials have been written, and a diverse

community has formed around Python.

1 print("Hello World!")

Listing A.1: Hello World program in Python

However, some of these benefits come at the cost of speed. In contrast with more-

traditional programming languages like C, Python is not compiled. This means that the

Python program must be read-in, processed, & executed all at run-time, in contrast with

C which is pre-compiled, and everything except the execution can happen in advance. 1

So there is essentially a trade-off between software execution time (worse in Python) and

development time (better in Python).

For many projects, this trade-off is acceptable, but it is not appropriate for every

possible application. For example, in applications where latency is critical (i.e. response

time), such as embedded systems or a quantum computing experiment, the overhead of

Python is not acceptable. Another example is extremely lengthy numeric calculations,

such as those performed on a High-Performance Computing (HPC) system, such as nu-

clear simulations that the USA Department of Energy performs on their supercomputers.

1This limitation can be worked around by writing extensions/Python libraries that wrap low-level com-
piled machine code (called bindings). The machine code can be produced by any programming language,
such as Rust, C/C++, etc. However, there will still be some overhead in calling the wrapped machine code.

206

A.2 Python Packaging

Though Python is one of the most popular programming languages, one perpetual prob-

lem that arises due to its dynamic nature is that of dependencies. In a statically-compiled

language like C, most dependencies are resolved at compile time. Python does not do

this, and it instead relies on the users to have all dependencies present on their system in

order to run. Generically, the process of defining dependencies, ensuring the necessary

dependencies are present, and resolving any dependency conflicts falls under the umbrella

of Python packaging.

A.2.1 Python Libraries Overview

One of Python’s most useful features is its ability to easily use external libraries that other

people have written in your own software. To use these libraries, they must be made

available (installed) on your local PC.

Roughly, this process involves:

1. Find & Download package

2. De-compress the package

3. Any compilation/setup steps for your specific computer

4. Move the package to a directory where Python can find it

5. Use library in Python

207

Tool Pros Cons

Pip De-facto standard. Wide support Doesn’t support non-
Python/mixed-language projects
well

Conda [187]
(Anaconda) Wide package support, interopera-

ble with Pip, support for environ-
ments.

Slow to determine dependencies
for many requirements. This
is partially solved with the re-
implementation in mamba.

Table A.1: Comparison of Python Package Managers

If you are installing a “local” package, typically one that you have written and which

resides entirely on your PC, then the download & decompression steps can be skipped.

A.2.2 Python Package Managers

To ease the process of finding & installing these libraries, there are several standard tools.

A.2.3 Python Environments

In a software context, an environment is the set of software packages that you have avail-

able. We can extend this definition to Python, and call a Python environment the set of all

installed Python packages as well as a particular version of the Python interpreter, which

processes and executes the Python source code.

It is generally useful to have several different Python environments available on

your system. The primary advantage is that it allows logical separation between tasks,

which can avoid unintended side effects. For example, some Python package old that

you might want to use is only available for a specific version of Python, say 3.5, but an-

other package shiny, with all the latest features and bugfixes, is only available for Python

208

>= 3.7. Thus, these two packages cannot co-exist with the same version of the Python

interpreter, so they must exist in separate environments. 2 This contrived problem is un-

likely to be an issue for a small set of required packages, but Python programs tend to

require on many libraries which increases this risk.

There are many different solutions for creating different Python environments (typ-

ically called virtual environments) on the same PC. Each of these will perform roughly

the same task, and are sorted in approximately descending order of current popularity,

based on my personal observations.

1. conda/mamba [187]

2. virtualenv

3. venv (built-in to the Python standard library)

4. pipenv [188]

5. Nix [30]

Describing how to use each of these tools is outside the scope of this thesis, but

extensive documentation exists on each of them. Any option will work well for most use

cases, so I recommend either using the standard practice of your group, or just using the

most popular ones. 3

2There are sometimes ways to workaround this incompatibility, but they are typically labor-intensive to
implement and are unlikely to continuously working due to their hand-crafted nature.

3My one recommendation on which Python package manager to use is to avoid Anaconda in favor of
Mamba. I have personally found that Anaconda’s dependency solver is slow & sometimes error-prone, and
Mamba is generally much more responsive, while retaining the same functionality.

209

A.3 Python Best Practices

Many people who use Python are experimental physicists, who have little prior exposure

to Python or general software development best practices. It is helpful to lay out some

best practices when using Python, which can both help avoid bugs, teach better software

development practices, and guide people to communicate better through code.

This section will lay out my somewhat opinionated set of best practices & tools.

This section should be considered a set of guidelines that will have positive long-term

impact, and not a rigid manual that should be followed at the expense of larger goals.

A.3.1 Recommended Development Tools

The following is a list of tools that I personally prefer to use, which have either taught me

best practices or have improved my software development workflow.

Tool Name Category Benefit

Visual Studio Code IDE Useful plugins, supports many programming lan-
guages.

black Python Auto-
Formatter

Standardize code appearance. Faster to read stan-
dard code. Also minimizes Git differences. Ex-
tremely fast.

pytest Unit Testing Runs tests on Python code. Can be used to con-
firm that a feature works as designed, that func-
tionality still works as expected, or that software
upgrades have not broken any features.

pdb Debugging Built-in Python debugger. Can also be triggered
by inserting and executing breakpoint() in
Python code. Critical for complex Python pro-
grams.

continues on next page

210

Tool Name Category Benefit

flake8 Linting4 Checks common Python errors and best prac-
tices. flake8-artiq is a useful plugin for
checking for errors in ARTIQ “kernels” run on
the FPGA’s soft CPU.

pylint Linting Slower but more in-depth linter than flake8.
Does not support flake8-artiq.

jupyter Interactive
Notebooks

Python equivalent of a Mathematica notebook.
Useful for prototyping software, or in an experi-
ment workflow for submitting an experiment and
then analyzing the collected data.

sphinx Documentation Can automatically generate documentation for
functions and modules if docstrings5 exist.

pyment Docstring Gen-
erator

Auto-generates Python docstrings for a module.

Table A.2: Suggested Python Development Tools. This is just a sample of the tools
that the author has found most helpful or intriguing. These tools primarily focus on
encouraging best software development practices. If best practices in formatting and
Python development are followed, it is much easier to collaborate in a team because less
time is spent deciphering what legacy code is doing.

A.3.2 Profiling & Optimization

One key aspect of software development that should not be underestimated is the need

for, and benefit of, performing software profiling and subsequent optimization. Software

profiling is the process of benchmarking a piece of software to determine how long it

takes to run, while tracking where execution time is spent. After profiling, those results

can be used to perform optimization of certain functionality. These two concepts are

intricately linked; first you run profiling to understand where a piece of software is slow,

4Linting is static code analysis for finding bugs, bad practice programming patterns, formatting issues,
etc. Linting is the primary form of code analysis available for Python because Python is not a compiled
language.

5Docstrings are the Python way of documenting a variable, class, function/method, or module. I person-
ally prefer the Google-style docstring format, because it is human-readable and requires little memorization.

211

and then you optimize that. Repeat this process several times, and the resulting software

will typically be much faster than the original software. 6

Python has several tools to aid the profiling process, though there are fewer tools

for aiding in code optimization.

A.3.2.1 Python Profiling

Profiling a piece of Python software has a few steps:

1. Create sample program: This should either be representative of a typical execution,

or a stress test. Typically this looks like writing a sample script (a *.py file) that

uses the software in question.

2. Run sample program in profiling mode. Python has several debugging libraries.

A recommended built-in library is cProfile, which introduces relatively lit-

tle overhead for recording statistics. This can be run with e.g. $ python -m

cProfile -o my_profiling_results.prof my_script.py.

3. Analyze Statistics: This step is where the profiling results are considered, and slow

functions are identified. Tools such as tuna or the built-in pstats are helpful for

this.

Once an appropriate function/code segment has been selected, then that segment should

be optimized.

6This process is also relatively efficient with developer resources, because it uses empirical evidence for
the sections that are actually slow, instead of wasting time optimizing parts of the software that might not
actually be slow.

212

A.3.2.2 Python Optimization

Python is a somewhat difficult programming language to optimize, because it is inter-

preted instead of natively compiled. So static compiler optimizations (such as turning on

gcc’s -O3 flags) are not available to Python.

Instead, users are left with attempting either algorithmic improvements, or compil-

ing to native machine code in order to optimize a given segment.

Algorithmic improvements are generally easier, as the complexity is lower and it

doesn’t involve the use of external tools. Examples of algorithmic improvements include

changing the type of sorting algorithm used, caching data to prevent iterating over an

array several times, or using a data structure optimized for the operation that you are

performing (i.e. dictionary for faster lookup vs a list).

Native compilation will be discussed in Appendix A.3.3.

A.3.3 Cython: Compilation from Python to Native Code

Python, as a flexible interpreted language, is able to easily bridge between different soft-

ware interfaces, especially using tools such as cython. Cython is a python library that

allows converting Python-native (or Python-like) code to an equivalent C program, and

then compiling the C program. The C program/function can then be called transparently

via Python. This allows CPU-bound tasks, such as floating point calculations, to happen

as quickly as possible without the overhead of a Python interpreter. This technique can

yield speedups of several hundred times, which can be enough to change a solution from

infeasible to practically negligible.

213

0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

Normalized RF Drive Power (Pin

Psat
)

A
O

M
Tr

an
sm

is
si

on
(n

or
m

.)

Example AOM RF Saturation Nonlinearity

0th-order beam
1st-order beam

Figure A.1: Example of AOM Transmission Saturation as a function of RF Drive
Power. The AOM transmission on the first-order beam (desired) saturates at Pin = Psat.
The x-axis is the normalized drive power (normalized so that 1.0 is the saturation point),
and the y-axis is the amount of the total beam power diffracted into a given AOM beam
order (normalized to total beam power). This AOM has diffraction efficiency of 80%.

To make the benefits of Cython more concrete, here is one example that we encoun-

tered when designing schedule modifications on top of the PulseCompiler (Chapter 6).

We perform our Raman operations by modulating laser beams using AOMs, which

are themselves modulated by RF signals. The response of the AOMs to RF drive exhibits

a nonlinear effect, where the transfer of power into the AOM-modulated beam saturates

(illustrated in Fig. A.1). This effect manifests in diminishing returns of increased RF

amplitude with respect to the rate of Rabi oscillations of an ion. We can correct for this

nonlinearity by adjusting the amplitude of a waveform. However, the waveform ampli-

tudes are not always static; the RFSoC supports amplitudes with cubic spline coefficients.

Thus, to compensate for the AOM nonlinearity, the amplitude cubic spline coeffi-

214

cients will need to be recalculated. Some testing determined that this could be done with

an iterative fitting routine. The caveat is that this nonlinearity needs to be applied to each

set of cubic spline coefficients of a waveform sequence. For an example sequence that

might include Nsegments = 10000, and initial implementations of this algorithm that took

≈ 500 µs to execute per segment, nonlinearity correction could take ≈ 5 s of the entire

programming sequence.

Fortunately, this is a very isolated subroutine, which should be able to be heavily

optimized. Using Cython, and various compiler optimizations, we were able to reduce

the time per execution from ≈ 400 µs per correction to ≈ 1 µs per correction, yielding a

400× speedup.

While implementing and optimizing a Cython version of all Python software is

impractical7, it does illustrate the potential of software optimizations in Python especially.

7Especially because this application was almost an ideal case, due to heavy use of raw number-crunching
which needs minimal overhead.

215

Appendix B: Git and its Usage in Physics Experiments

B.1 Git Overview

Git is a software program to do version control of any set of folders, though it is most-used

for software development projects. While it is not the only version control software 1 , it

is the most popular and one of the most general. Git is responsible for tracking the state

of a set of files (called a repository) over time, while also allowing changes to happen in

parallel on different devices (PCs) and still be consistent.

B.1.1 How does Git work?

The most common data type used in Git is a “commit”. A commit is a cryptographic

hash of the state of the repository, along with some metadata information such as the

commit author, a message about what has been committed, and the previous commit.

Each commit is identified by a hash of its contents, so it is virtually guaranteed to point

to a unique state of the repository and not have any collisions with other commits in the

repository.

This data structure creates a graph data structure, where it is possible to trace and

1Other protocols like Subversion, Mercurial, and others exist, but are not commonly used in modern
software development.

216

reconstruct the state of the Git-versioned files by tracking the original source of any

changes. The sum of all commits and information about the source code is called a

repository.

B.1.2 Git for Beginners

Commits can be grouped into a “branch”. The idea of a branch is that it is a sequence

of commits. A new branch can be easily created from a certain commit (or branch),

which will allow commits to be added to only that branch without affecting the state of

the previous commit. When work is finished on the temporary branch B, it can be merged

into the main development branch main, which adds any changes from B into the main

branch.

Git is typically interacted with using the $ git command-line tool. If GUI tools

are used (e.g. gitk, GitHub CLI, VS Code, PyCharm, etc.), they are effec-

tively a wrapper around the underlying git tool.

There are many introductory resources to Git that do a very good job of explaining

how to use Git, but I will introduce some basic Git commands and their usage here that are

especially useful. Knowing how to use these commands (Table B.1) can easily transfer

to using the GUI tools, because the same concepts apply though they might be exposed

differently. 2

2My personal opinion is that it is better to learn using the command-line tools, because they offer better
error messages and are more standardized than the GUI tools so it is easier to get support. Once basic
competency in Git is obtained, it is useful to use GUI tools for intermediate operations such as looking at
file history, or adding only sections (patches) of a file for commit.

217

Command Short Description Notes

$ git clone url Download a copy of a Git
repository

This creates a complete copy of the
Git repository stored online.

$ git pull Update with any remote
changes

Update local repository with any
changes on the online repository,
then update the current branch with
any newer commits.

$ git push Add any new commits for
current branch to the on-
line repository

Pushes (sends) any new commits
on the current branch to the cor-
responding branch on the online
repository. The --force flag can
be added after amending a commit,
but should only be used if a minor
fix was made to a development (not
stable) branch.

$ git checkout
branch-name

Switch to a different
branch.

Changes all local files to how they
were on the latest commit on the lo-
cal branch branch-name.

$ git checkout
--branch
new-branch

Create new branch new-
branch from current com-
mit.

Creates a new branch that com-
mits can be added to. The start
of the branch is at the current
commit. The branch should be
pushed to the cloud with $ git
push --upstream origin
new-branch.

$ git branch
--delete
branch-name

Delete local copy of
branch

This command will error if the
branch has not been pushed to the
remote or merged into the primary
branch.

$ git remote
get-url
remote-name

Print URL of the remote
repository that this will
pull from/push to

Common values for remote-name
are origin and upstream

$ git status Print out any changed or
staged files in the current
local repository

Should always be run & checked
before committing to make sure
that only the desired files will be
committed.

continues on next page

218

Command Short Description Notes

$ git restore
--staged file

Unstage the selected file Prevents the selected file from be-
ing committed with the commit that
is currently being prepared.

$ git restore
file

Undo ALL changes to the
local file(s).

This essentially undoes any local
changes since the last commit. Can
be used with file = ./ to essentially
restore to the last commit.

$ git add file Adds file to the staging
area

Files in staging area will be com-
mitted when $ git commit is
run

$ git commit Create a new commit on
the current branch with
any changes specified in
the index.

I like to use the -m "Commit
message" flag from the command
line for short commit messages, as
it will commit immediately with the
given message.

$ git commit
--amend

Modify the last commit
(message or change files)

This should only be used on the
LAST commit (usually). I mostly
use this if I forgot to add part of a
file to the commit or adjust the com-
mit message.

$ git merge
branch-name

Merge commits from
branch-name into current
branch

Merges the git history of two
branches, typically by adding any
new commits from branch-name to
the current branch.

$ git stash
push/pop

Temporarily save (re-
cover) any changes to
Git-versioned files

This is useful when making
changes to a branch, but you
temporarily want to switch to a
different branch. push will tem-
porarily save the changes, which
can be restored with pop.

$ git log Look at commit history Useful for looking at what changes
have recently been made to a
branch.

continues on next page

219

Command Short Description Notes

Table B.1: Common Git Command Reference. These are command-line commands
that can be used with the standard Git command-line interface tool. $ git rebase
is a powerful tool that can fix many mistakes, but requires extreme caution when using.
Similar caution should be used when using the --force/-f version of any commands,
as either $ git rebase or --force can permanently wreck the state of a repository.
The full documentation for git can be found at [29]. $ git filter-repo is another
useful tool for advanced git operations, such as separating folders out of a repository while
preserving history [189].

B.2 Git in Physics Experiment

While it may appear strange to discuss Git in the context of a physics experiment, there is

a mismatch in expectations and best practices for software best practices when compared

with the needs of a physics experiment that are worth examining.

Git is generally very good at managing state across several computers, but it has a

certain jargon that is not immediately clear, or can conflict with expected naming conven-

tions from physics. It is also a semi-complicated software tool that many physicists have

but passing familiarity with. Git generally expects a structured software development pro-

cess, which few physicists have any experience with. 3 Finally, there is a steep learning

curve associated with Git, especially as its use is adapted for each particular group using

it, and this learning curve can be off-putting for non-specialists.

3Git works well for single-user, single-branch situations, but such use is almost trivial and will not be
treated here.

220

B.2.1 Requirements for a Physics Experiment

Physics experiments have several different characteristics that separate them from typical

software engineering projects. These include:

• Hardware is the single-source-of truth: The software to control a physics experi-

ment must reflect the state of the physical experiment & its hardware. This will

necessarily slow down the pace of software development, as it must be kept in sync

with the physical hardware which is generally slow to change. Further, any software

changes must be tested to ensure compatibility with the physical experiment.

• Jargon: Both physics groups and software engineering tend to have field-specific

jargon, which creates a language barrier between the two fields. Concepts such

as versions and releases don’t really apply to a single, rolling-updated piece of

hardware.

• Parallel development: Some physics experiment teams comprise about half a dozen

people. These people will necessarily diversify and work on separate projects, all

of which will have their own development trajectory.

• Need for offline development: To continue efficient development, while being con-

strained to a single piece of hardware, offline development should be considered,

especially on a team of more than a few people. This is an enabler of parallel devel-

opment, though conceptually different. Offline development is the idea that basic

functionality can be validated without using physical hardware, which can make

better use of limited test time and resources.

221

• Lack of training: Training in the need for and use of version control systems is

typically reserved for engineering and computer science educations. So the utility

and benefits of version control are not considered by an average physicist.

• Complex dependencies: Physicists have a tendency to pull in various pre-built parts

to their experiments, whether hardware or software. This can create a complex web

of software dependencies. However, as the complexity and number of dependencies

increases, the risk of incompatibility increases as well as the overhead of keeping

these packages up-to-date.

Considering these requirements, version control for a physics experiment should be

strongly considered. In addition to (at least partially) addressing most of the requirements

above, it can also provide backups of critical software, minimize the cost of mistakes4, and

enable parallel and remote development that is not explicitly tied to a specific computer

or hardware experiment.

B.2.2 Suggested Git Workflow

Given these constraints, we have developed best working practices for Git that attempt to

balance the need for offline software development with the single-source-of-truth nature

of a physical, ever-changing experimental hardware setup.

First, we begin by declaring two primary branches for our Git repository. These

correspond to logical points of the experimental setup, and use plain physicist language

instead of software terms. 5 The branches are:
4For example, consider a value that was mistakenly changed. Version control allows tracking down that

particular change, as well as to roll back to a time before the erroneous change was made.
5For many years, across all of software engineering, the default Git branch name was master. Besides

222

• experiment-LIVE: This branch is closest to a traditional master or main

branch, and corresponds to the current state of the experiment, and is closely matched

with the hardware. The concept of this branch is that if a software development

effort goes wrong, this branch should always be working. Further, if something

about the state of the hardware changes, then this branch is immediately updated ac-

cordingly. Some examples of hardware changes that might need software changes

would include:

– New hardware added

– Signals remapped

– Calibration value or limits changed

This branch should only be committed to from the computer(s) that are directly

connected to the machine, and should be regularly (roughly every commit) pushed

to the cloud for backup and to ensure that everyone is using the same software

version.

• experiment-stable: This branch will be updated (merged) from experiment-

LIVEwhenever an important milestone is reached, such as data for a paper is taken.

The rationale is that this is an easy point to remember, and the software state at this

point might either need to be referenced or recovered for future paper revisions.

However, neither of these branches allow for long-term software development, or

potential slavery connotations, this name is simply confusing to people who are not well-versed in software
development or Git, so I highly recommend changing this branch name at the earliest convenience. I
recommend changing master to either something that denotes priority such as main, or a name that is more
specific to your specific use case, such as experiment-LIVE.

223

for team members to work offline on the same repository. As such, the following proce-

dure is recommended for new feature software development. 6

1. Create development branch. The source branch should be experiment-LIVE

to get the most up-to-date changes7. I typically like to use dev-feature-name

or feature/feature-name for the branch name.

2. Add commits by developing your new feature.

3. Push commits with $ git push

4. Create Merge/Pull Request. A Merge Request (MR) or Pull Request (PR) should

describe the motivation and any changes that are being made, as well as any re-

maining TODO items, including items to test. 8 The target branch (branch that the

feature is being merged into) should be experiment-LIVE.

5. Checkout branch on experiment PC

6. Merge new commits from experiment-LIVE. This ensures that your software is

compatible with the latest machine state snapshot.

7. Test new feature. Add and push new commits as needed.

6One possible permutation of this scheme is to batch together several changes/features into a testing
branch, which could be named e.g. TESTING-experiment-LIVE. This allows parallelizing develop-
ment, and having an intermediate “staging” area in between having finished the software and made sure that
it works as far as you can tell, and actually reaching the stable experiment-LIVE branch. One caution
with this approach is that it should only be used for small batches (≈ 5) changes. The risk with too many
changes is that they will be interdependent, which can slow troubleshooting of any bugs that arise. This can
be an acceptable tradeoff when testing time for software on the machine is limited relative to the number of
new features that are being developed.

7Make sure to pull any changes into your local branch before creating the new branch.
8Because you might not be able to test the MR/PR for a while.

224

8. Approve Pull Request & Merge. If performed through a web interface such as

GitLab/GitHub, these steps can be performed together.

225

Appendix C: Nix: Deterministic, Reproducible Software

C.1 Overview

One problem that arises when control of our quantum computer is distributed across sev-

eral classical computers is keeping the software running on those computers synchro-

nized. Source-control tools such as Git [29] provide part of the solution, but they only

are capable of managing the source code of our experiment control software, and can-

not guarantee that the dependencies of that software (e.g. Python [28]) are standardized

across multiple computers.

Imagine that the control system is written in Python, and installed on a computer.

At the time of initial installation, the latest version of Python is 3.6, and all the software

is designed to work with that Python version. However, a year later, a new computer is

added to the distributed control system to perform some other function, but it is installed

with Python 3.7. Suddenly, the software that was functioning perfectly on Python 3.6 is

no longer working, or has subtle bugs.

To resolve this issue, the goal is to ensure that all computers are running the exact

same versions of all dependent software packages: i.e. Python, ARTIQ, Numpy, Scipy,

etc. There are some commonly used tools that exist for capturing this “software environ-

ment”, such as Conda [187], pipenv [188], venv [190], poetry [191], etc. However, these

226

tend to collectively suffer from some flaws:

• Reliance on external package providers to host the pre-built packages (called wheels

in Python).

• Cannot specify arbitrary environment variables, which is useful for reproducibly

changing settings.

• Restricted to Python software only (virtualenv, pipenv, poetry).

• Cannot incorporate patches to the source code to fix issues on your own timetable

(all).

• Slow dependency solvers (Conda).

• Software build cannot be fully replicated from source code.

• Upgrades to software removes the previous software versions, and it is difficult to

recover the previous software if the upgrade causes bugs.

The issue is that it is difficult to capture the entire state of a software system: to fully

reproduce the software environment used, you theoretically need to use the exact same

version of every piece of software in the entire toolchain, as well as the build environment

that produced all the software pieces.

In other words, in order to reproduce a software environment including Python, you

also need to know the exact version of the software that compiled CPython (i.e. Python’s

source code) to the Python binary run on your local machine. You also must know the

settings (typically environment variables) used in the Python compilation.

227

C.2 What is Nix?

Nix [30, 192] is a language that is designed to purely functionally describe software pack-

ages. In this context, purely functional refers to a computer science term [193] meaning

that some computation is based purely on a set of inputs, and will always generate the

same set of outputs given the same inputs, while producing no side effects. This concept

is similarly seen in languages such as Haskell and Julia.

When viewed in the Nix perspective, the software build process itself becomes a

function: given a set of inputs (source code, a package’s dependencies, and the instruc-

tions on how to build a software package), it will always produce the same output soft-

ware. This process is independent of which computer it is built on, ensuring that the

software package is fully reproducible. 1

Thus, the text of a package in Nix (a *.nix file) is how to build the software

package (in actuality, any output file), and the output is the package itself, and will be

herein called the “package description”.

C.2.1 Cryptographic Hashes & Nix Store

To capture a software package’s dependencies, Nix employs cryptographic hashes [192].

Cryptographic hashes are a function that converts an arbitrarily-large input into a smaller

1For Nix to work properly, it expects a Unix-like operating system to run on. Examples include Linux
and MacOS. As such, Nix is not available directly on Windows. However, using WSL2 [194], a Linux
Virtual Machine (VM) can be easily installed, and Nix can be run in the virtual machine. This method
works very smoothly, but it is not the most performant option for building or running Linux software, so it
is not universally recommended. WSL virtualization also does not easily support GUI software, so WSL
+ Nix should mostly be used for text-only software, or in an IDE that natively supports it such as Visual
Studio Code.

228

number, and typically have the properties:

• Quick to compute.

• Unlikely to collide.2

• Cryptographically secure one-way functions.3

• Small input changes create large output changes, making changes to the input seem

uncorrelated to the output.

By using cryptographic hashes, Nix is able to ensure reproducibility: if the inputs

to a package description function change (either due to the build instructions themselves

changing, or dependencies changing), the hash of the package description will change,

and Nix will know that the package is now out-of-date and needs rebuilt.

When generating a package, Nix goes through two steps: evaluation and instan-

tiation. At evaluation, all package dependencies are frozen and hashed, and a “deriva-

tion” (i.e. all the dependencies and instructions needed to generate the software out-

put) is created. At instantiation, all derivations required for the chosen software are

followed to create the desired software. The results of evaluation and instantiation for

each package and its source are cached in the “Nix store”, at unique files or folders simi-

lar to /nix/store/HASH-PACKAGE_NAME-PACKAGE_VERSION for software out-

puts, and /nix/store/DERIVATION_HASH-PACKAGE_NAME-PACKAGE_VERSION.drv

for derivations. The naïve approach to instantiation is to build every required software

package in the dependency tree on your local computer. However, this is simply unnec-

2Meaning that it is very unlikely or difficult to find two inputs will provide the same output
3Meaning that it is difficult to do the reverse transform from output into the original input

229

essary and inefficient for most use cases: most people have no need or desire to rebuild

core software packages such as the gcc compiler from source. Instead, Nix can substitute

in binary caches from trusted sources for any given output, which it does by searching re-

mote computers for the cryptographic hash corresponding to a derivation’s output. Once

an item is added to the Nix store, it is immutable. If the package description or source

changes, a new derivation and output are generated.

C.3 Nix Package Hierarchy

Nix packages tend to employ a hierarchy of package description sources (ordered from

most general/public to most specific/private):

1. Nixpkgs: the primary package description source for packages described in Nix.

Nixpkgs is a single Git repository hosted on GitHub [195]. All package de-

scriptions defined in Nixpkgs are built approximately daily, and are cached on

https://cache.nixos.org

2. Shared Upstream Repository: A single repository where a community of users

make their package descriptions public, but generally less-reliable than Nixpkgs.

Examples include the Nix User Repository (NUR), and ARTIQ’s Nix Scripts repos-

itory [196].

3. Personal Repositories: You can create multiple projects, each with their own Nix

package description, and use them as a dependency for a separate project.

The Nix package descriptions can be sourced from any file location, though they

230

https://cache.nixos.org

are typically from a public or private Git repository, or a publicly-accessible file on the

Internet.

C.4 Using Nix

Once a Nix environment is designed, written, and builds without errors, it is straight-

forward for end-users to actually use. This next section will describe how to use a Nix

environment practically, particularly in the context of ARTIQ. This section is written pri-

marily for Nix without using the new flakes features, so it is primarily applicable to AR-

TIQ <= v6. However, many of the key concepts carry over, even if their actual naming

or format is slightly different.

C.4.1 Example Nix Environment

Let us consider an example Nix environment from the ARTIQ installation guide [25].

1 let
2 # pkgs contains the NixOS package collection.
3 # ARTIQ depends on some of them, and
4 # you may want some additional packages from there.
5 pkgs = import <nixpkgs> {};
6 artiq-full = import <artiq-full> { inherit pkgs; };
7 in
8 pkgs.mkShell {
9 buildInputs = [

10 (pkgs.python3.withPackages(ps: [
11 # List desired Python packages here.
12
13 # You probably want these two.
14 artiq-full.artiq
15 artiq-full.artiq-comtools
16
17 # You need a board support package if and only if you intend to

flash
18 # a board (those packages contain only board firmware).
19 # The lines below are only examples, you need to select

appropriate
20 # packages for your boards.

231

21 #artiq-full.artiq-board-kc705-nist_clock
22 #artiq-full.artiq-board-kasli-wipm
23 #ps.paramiko # needed if and only if flashing boards remotely

(artiq_flash -H)
24
25 # The NixOS package collection contains many other packages

that you may find
26 # interesting for your research. Here are some examples:
27 #ps.pandas
28 #ps.numpy
29 #ps.scipy
30 #ps.numba
31 #(ps.matplotlib.override { enableQt = true; })
32 #ps.bokeh
33 #ps.cirq
34 #ps.qiskit
35]))
36
37 # List desired non-Python packages here
38 #artiq-full.openocd # needed if and only if flashing boards
39 # Other potentially interesting packages from the NixOS package

collection:
40 #pkgs.gtkwave
41 #pkgs.spyder
42 #pkgs.R
43 #pkgs.julia
44];
45 }

Listing C.1: Nix ARTIQ Environment example. Filename: shell.nix

Let us consider this Nix package description Listing C.1 in sections.

Block
Name

Block Code Description Line
Num-
bers

Let
Block

let ... in ... Variable definition section. 1, 7

Comment # ... Either text comment or disabled package. 2, etc

Top-
level
Object

pkgs.mkShell{} Create a Nix shell environment with the
given set of packages available. This is actu-
ally a function, and will produce a derivation
given the set of inputs (e.g. buildInputs)

8, 45

continues on next page

232

Block
Name

Block Code Description Line
Num-
bers

Base
Package
set defi-
nition

pkgs = import
<nixpkgs> {}

Defines the “base” set of packages available
for use. This is a particular instance/com-
mit of the large nixpkgs repository. Ba-
sic packages like compilers, Python, etc are
available from here.

5

Variable
defini-
tion

artiq-full
= import
<artiq-full> {
inherit pkgs; }

Defines a set of packages to be avail-
able, which are defined in a library path
<artiq-full>. These ARTIQ packages
are built against the base package set pkgs.

6

Set defi-
nition

{ a = “b”;} Defines an attribute set, which is a mapping
from a name (e.g. a) to a value (e.g. “b”)

5, 6, 8,
etc

List def-
inition

[a] Define a list 10 →
35, etc

Set At-
tribute

a.b Use a given attribute from the set pkgs 8

Available
Pack-
ages

buildInputs =
[...];

Defines the packages available in the
mkShell, i.e. the packages that are inputs
to “building” the shell.

9

Python
Package
Environ-
ment

python3
.withPackages

Python requires that all available packages
for a given virtual environment be placed in
the same directory. This function defines a
Python environment that only has the given
packages (and their dependencies) available.

10

Python
Package
Usage

ps.numpy Add the python package numpy
to the Python environment.
artiq-full.artiq is also valid,
but it comes from a different package set. 4.

28

Non-
Python
Package
Usage

artiq-full.openocd Adds non-Python package openocd to the
shell environment. Currently commented
out.

38

continues on next page

4Note: numpy is currently commented out, but will still be included by default because it is a depen-
dency of ARTIQ.

233

Block
Name

Block Code Description Line
Num-
bers

Table C.1: Breakdown of Nix environment description sections (from List-
ing C.1). The columns indicate, respectively, the type of language construct,
an example of the language construct, and explanation of the construct, and some
line numbers that demonstrate that construct. Other resources on learning Nix can
be found at https://nixos.org/guides/nix-pills/, https://nixos.
org/learn.html, https://nix.dev/tutorials/, and https://nixos.
org/manual/nix/stable/introduction.html, as well as many examples in
the main Nix repositories [195].

For the sake of reference, here is a roughly equivalent description using the Nix

flake format from https://m-labs.hk/artiq/manual/installing.html#

installing-via-nix-linux (Listing C.2):

1 {
2 inputs.artiq.url = "git+https://github.com/m-labs/artiq.git?ref

=release-7";
3 inputs.extrapkg.url = "git+https://git.m-labs.hk/M-Labs/artiq-

extrapkg.git?ref=release-7";
4 inputs.extrapkg.inputs.artiq.follows = "artiq";
5 outputs = { self, artiq, extrapkg }:
6 let
7 pkgs = artiq.inputs.nixpkgs.legacyPackages.x86_64-linux;
8 aqmain = artiq.packages.x86_64-linux;
9 aqextra = extrapkg.packages.x86_64-linux;

10 in {
11 defaultPackage.x86_64-linux = pkgs.buildEnv {
12 name = "artiq-env";
13 paths = [
14 # ==
15 # EDIT BELOW
16 # ==
17 (pkgs.python3.withPackages(ps: [
18 # List desired Python packages here.
19 aqmain.artiq
20 #ps.paramiko # needed if and only if flashing boards

remotely (artiq_flash -H)
21 #aqextra.flake8-artiq
22
23 # The NixOS package collection contains many other

packages that you may find
24 # interesting. Here are some examples:

234

https://nixos.org/guides/nix-pills/
https://nixos.org/learn.html
https://nixos.org/learn.html
https://nix.dev/tutorials/
https://nixos.org/manual/nix/stable/introduction.html
https://nixos.org/manual/nix/stable/introduction.html
https://m-labs.hk/artiq/manual/installing.html#installing-via-nix-linux
https://m-labs.hk/artiq/manual/installing.html#installing-via-nix-linux

25 #ps.pandas
26 #ps.numpy
27 #ps.scipy
28 #ps.numba
29 #ps.matplotlib
30 # or if you need Qt (will recompile):
31 #(ps.matplotlib.override { enableQt = true; })
32 #ps.bokeh
33 #ps.cirq
34 #ps.qiskit
35]))
36 #aqextra.korad_ka3005p
37 #aqextra.novatech409b
38 # List desired non-Python packages here
39 #aqmain.openocd-bscanspi # needed if and only if

flashing boards
40 # Other potentially interesting packages from the NixOS

package collection:
41 #pkgs.gtkwave
42 #pkgs.spyder
43 #pkgs.R
44 #pkgs.julia
45 # ==
46 # EDIT ABOVE
47 # ==
48];
49 };
50 };
51 }

Listing C.2: ARTIQ 7 shell environment definition using Nix flake format. Filename:
flake.nix

The primary difference here is that the exact branch & Git repository is specified for

the ARTIQ shell. There are several small naming differences, such as the shell description

(pkgs.mkShell), now at Line 11, which is defined as defaultPackage.x86_64-linux

= pkgs.buildEnv { ... };. Also, several ARTIQ packages that had previously

been part of artiq-full have now been moved to aqextra. The primary advantage

that this has, other than compatibility with ARTIQ v7, is that this code is fully repro-

ducible by simply changing the URLs in Listing C.2 Line 2, 3 to use a specific commit

instead of a branch name (i.e. release-7).

Once you have defined the needed inputs & binary package caches as specified in

235

the ARTIQ manual, you can now create the shell environment on your local PC. With

the ARTIQ 6 version (Listing C.1), this is as simple as executing in your command-line

terminal $ nix-shell /path/to/shell.nix. For the ARTIQ 7 version, you can

execute $ nix shell /path/to/flake.nix. 5

C.4.2 Full Reproducibility

One of the primary benefits that Nix provides is that the environment with all of the

packages available is fully reproducible on any other PC. This means that if your computer

suffers a catastrophic meltdown, if the Internet (or the package repositories such as PyPi,

see Appendix A.2.2) are not available (or don’t support your particular system), that you

can generate the entire set of packages (i.e. environment) from scratch if given enough

time.

This also provides a few other benefits:

• Scalability: Once a Nix environment is defined once, it is fully specified, and can be

replicated exactly on any other computer. This largely shifts the problem of setting

up software from the end-user to the developer, and minimizes the need for long

lists of installation instructions, which can be somewhat fragile (or non-repeatable).

• Environment versioning: A Nix software environment is just a set of text files, so the

environment can be easily versioned with a program like Git (Appendix B). Using

Git with Nix allows you to both fully define the software that you have available,

as well as to make incremental & easily rolled-back changes to the software. It

5Nix has a somewhat-unique feature that it can use a URL as the source for a *.nix, instead of only a
local on-PC path.

236

also allows for separate software changes on separate branches, with the software

environment updating on both. One example usage of this is developing a new

feature that requires some new software dependency. Until the new feature branch

is merged into the main branch, there is no risk of cross-contamination or undesired

side effects. This allows testing the new feature completely in isolation, instead of

mixing new & pre-existing software.

• Reproducible science & data analysis: Across various academic disciplines, there

has been a push for being able to reproduce the data analysis in papers [197]. Gen-

erally, these efforts stop at sharing the source code for the analysis code, but that is

missing a lot of potential context. For instance, suppose that there is a bug in your

particular version of a Python library that is resulting in a mis-ordering of data.

Without information about the complete software environment, little details such as

these would remain mysteries and be extremely hard to sort out, and could reflect

poorly on the academic whose results cannot be reproduced. With Nix, the entire

software stack can be described, with the side effect that it is actually easier for

others to reproduce your exact data analysis environment.

• Support for patches/bugfixes: In many physics lab environments, there is a general

resistance to changing any little detail, because the systems that are being studied

are highly complex and non-robust to outside errors. However, the software that is

run is typically also research-grade software, and not always very stable. As such,

sometimes there are critical small bugs that need to be fixed, but those do not merit

a large system upgrade to the latest version of software. An example would be Bug

237

B that is found in v1.0.0 of software S. After a bit of research, you find that the bug

has been fixed in S v2.0.0, but there are many other changes that could potentially

cause compatibility issues. Without Nix, the easiest solution would be to upgrade S

to v2.0.0, and just handle any compatibility issues that arise. With Nix, the easiest

solution is to just patch the source code with the bugfix, and then let Nix rebuild all

the necessary software. In this scheme, since you manually inspected the patch and

didn’t do a major software upgrade, you can minimize the risk of software issues

while gaining the ability to fix the relevant bug. An example of doing this can be

seen in Listing C.3, which simultaneously overrides the version of sipyco, adds

a patch from a Git commit, and then also applies a custom text replacement. 6

1 sipycoOverride = sipyco.overridePythonAttrs(oldAttrs: rec {
2 version = "1.4";
3 src = pkgs.fetchFromGitHub {
4 owner = "m-labs";
5 repo = "sipyco";
6 rev = "v${version}";
7 sha256 = "sha256:0

vw5z2m59ksc3kz4dbfwczc0k0hlklrvjcn6dc42b9kmknv1cimh";
8 };
9 patches = [

10 # this patch is just for demonstration purposes
11 (fetchpatch {
12 url = "https://github.com/m-labs/sipyco/commit/

ca911b0ac02aa466ab4f20c4dd3300cfbf577b20.patch";
13 name = "pr-11-fix-server-disconnects.patch";
14 sha256 = lib.fakeSha256;
15 })
16];
17 postPatch = ’’
18 substituteInPlace sipyco/asyncio_tools.py -{}-replace "limit

=4*1024*1024" "limit=64*1024*1024"
19 ’’;
20 });

Listing C.3: Example of Patching a Nix package to fix a software bug

6Note that these overrides/patches are all independent, and any combination could be used as desired.
This syntax is also only valid for Python packages. The syntax is a little more complex for Python than
other packages. More information can be found in the Nix manual (https://nixos.org/manual/
nix/stable/introduction.html).

238

https://nixos.org/manual/nix/stable/introduction.html
https://nixos.org/manual/nix/stable/introduction.html

C.4.3 Other Recommended Nix Tools

While Nix itself is feature-complete, there are several external tools that make working

with Nix in projects very easy. The following is a list of my recommended projects.

• Direnv (https://direnv.net/): This tool will automatically change your

shell environment variables when navigating to a particular directory. While this

tool has many features, in the context of Nix & ARTIQ, the most useful feature

is automatically loading a Nix shell environment when entering a given directory.

In other words, when you enter a specific software directory, all of your ARTIQ

command-line tools are now available because the Nix environment is automati-

cally loaded. 7

• Nix Flakes: An example of this was shown in Listing C.2. Nix flakes are a newer

built-in Nix feature to allow more modularity between package repositories, as well

as version-control those package dependencies. This topic is more complicated than

can be fully explained here. However, readers who are new to Nix should plan to

just start with learning Nix flakes, because they are becoming the de facto standard

in the community.

• Niv (https://github.com/nmattia/niv): Niv is responsible for tracking

upstream software dependencies, and making their source code easily available in

Nix. It also allows quickly updating/changing the current revision that the upstream

packages are at. There is an easy command-line tool for updating dependencies:

7We have had some issues with direnv not updating the environment when switching between branches
with different Nix descriptions. This theoretically could be solved with a program like [198].

239

https://direnv.net/
https://github.com/nmattia/niv

adding & updating a dependency that is on GitHub can be as easy as: $ niv add

m-labs:artiq && niv update artiq --branch release-6. Most

of the functionality of Niv was superseded by Nix Flakes when they were released,

but it is still useful when legacy code has not been converted to use Nix flakes. This

tool has been deprecated due to the maintainer moving on, so this should not be

used in new projects.

• NixOS: NixOS is similar to Docker, in that it can describe how a computer should

be set up from scratch, along with all configuration that it needs. However, NixOS

is designed to work on bare-metal PCs as well as VMs, while Docker is primarily

meant to run in a virtualization environment. While the concept is interesting, espe-

cially the ability to have your entire PC set-up using a single text file, my personal

experience is that the learning curve is steep for laboratory environments, and gen-

erally not worth the effort. However, if complete consistency in the PC’s available

software is a critical factor, then NixOS is one of the best available options.

A reference of Nix commands can be found at https://nixos.org/manual/

nix/stable/command-ref/experimental-commands.html and https://

nixos.wiki/wiki/Cheatsheet.

C.5 Nix usage in EURIQA

When we upgraded to ARTIQ 5, the EURIQA team decided to invest in working with

Nix. This meant that all of our Python dependencies needed to be converted to using Nix,

especially packages such as PulseCompiler, Qiskit, Cirq, etc.

240

https://nixos.org/manual/nix/stable/command-ref/experimental-commands.html
https://nixos.org/manual/nix/stable/command-ref/experimental-commands.html
https://nixos.wiki/wiki/Cheatsheet
https://nixos.wiki/wiki/Cheatsheet

To aid this, we created a public repository for several of these packages, avail-

able at https://github.com/drewrisinger/nur-packages. These pack-

ages, along with some private packages and the public ARTIQ packages, are incorporated

as dependencies of the EURIQA experimental code. One of the ways that we manage

these dependencies is using niv, a Nix tool which simplifies dependency addition, track-

ing, and updating.

241

https://github.com/drewrisinger/nur-packages

Bibliography

[1] Klaus Mølmer and Anders Sørensen. Multiparticle Entanglement of Hot Trapped
Ions. Physical Review Letters, 82(9):1835–1838, March 1999.

[2] Anders Sørensen and Klaus Mølmer. Quantum Computation with Ions in Thermal
Motion. Physical Review Letters, 82(9):1971–1974, March 1999.

[3] Anders Sørensen and Klaus Mølmer. Entanglement and quantum computation with
ions in thermal motion. Physical Review A, 62(2):022311, July 2000. Publisher:
American Physical Society.

[4] Norman S. Nise. Control systems engineering. Wiley, Hoboken, NJ, 6th ed edition,
2011.

[5] John L. Hennessy, David A. Patterson, and Krste Asanović. Computer architec-
ture: a quantitative approach. Morgan Kaufmann/Elsevier, Waltham, MA, 5th
edition, 2012. OCLC: ocn755102367.

[6] David A. Patterson and John L. Hennessy. Computer organization and design:
the hardware/software interface. The Morgan Kaufmann series in computer archi-
tecture and design. Elsevier/Morgan Kaufmann, Amsterdam ; Boston, 5th edition,
2014. OCLC: ocn859555917.

[7] Yves Bertot and Pierre Castéran. Interactive theorem proving and program de-
velopment: Coq’Art: the calculus of inductive constructions. Texts in theoretical
computer science. Springer, Berlin, 2010.

[8] Ning Wang, Naiqian Zhang, and Maohua Wang. Wireless sensors in agriculture
and food industry—Recent development and future perspective. Computers and
Electronics in Agriculture, 50(1):1–14, January 2006.

[9] Maurice V. Wilkes. Computers Then and Now. Journal of the ACM, 15(1):1–7,
January 1968.

[10] Steve Furber. Microprocessors: the engines of the digital age. Proceed-
ings of the Royal Society A: Mathematical, Physical and Engineering Sciences,
473(2199):20160893, March 2017. Publisher: Royal Society.

242

[11] M. Morris Mano and Michael D. Ciletti. Digital design: with a introduction to the
verilog hdl. Pearson Prentice Hall, Upper Saddle River, NJ, 5th ed edition, 2013.

[12] R.R. Schaller. Moore’s law: past, present and future. IEEE Spectrum, 34(6):52–59,
June 1997. Conference Name: IEEE Spectrum.

[13] Shankar Krishnan, Suresh V. Garimella, Gregory M. Chrysler, and Ravi V. Maha-
jan. Towards a Thermal Moore’s Law. IEEE Transactions on Advanced Packaging,
30(3):462–474, August 2007. Conference Name: IEEE Transactions on Advanced
Packaging.

[14] Quentin P. Herr, Anna Y. Herr, Oliver T. Oberg, and Alexander G. Ioannidis. Ultra-
low-power superconductor logic. Journal of Applied Physics, 109(10):103903,
May 2011. Publisher: American Institute of Physics.

[15] Thomas M. Conte, Erik P. DeBenedictis, Paolo A. Gargini, and Elie Track. Re-
booting Computing: The Road Ahead. Computer, 50(1):20–29, January 2017.
Conference Name: Computer.

[16] A.A. Sawchuk and T.C. Strand. Digital optical computing. Proceedings of the
IEEE, 72(7):758–779, July 1984. Conference Name: Proceedings of the IEEE.

[17] Phillip R. Kaye, Raymond Laflamme, and Michele Mosca. An introduction to
quantum computing. Oxford University Press, Oxford, 2007.

[18] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum in-
formation. Cambridge University Press, Cambridge ; New York, 10th anniversary
edition, 2010.

[19] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V. Gorshkov, P. Hess,
R. Islam, K. Kim, G. Pagano, P. Richerme, C. Senko, and N. Y. Yao. Programmable
Quantum Simulations of Spin Systems with Trapped Ions. arXiv:1912.07845
[cond-mat, physics:quant-ph], December 2019. arXiv: 1912.07845.

[20] Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-
Gordon. Simulated Quantum Computation of Molecular Energies. Science,
309(5741):1704–1707, September 2005. Publisher: American Association for the
Advancement of Science.

[21] B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kas-
sal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik,
and A. G. White. Towards quantum chemistry on a quantum computer. Nature
Chemistry, 2(2):106–111, February 2010. Number: 2 Publisher: Nature Publish-
ing Group.

[22] I.M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Reviews of
Modern Physics, 86(1):153–185, March 2014. Publisher: American Physical So-
ciety.

243

[23] Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd.
Quantum-inspired algorithms in practice. Quantum, 4:307, August 2020.
arXiv:1905.10415 [quant-ph].

[24] A. Narayanan and M. Moore. Quantum-inspired genetic algorithms. In Proceed-
ings of IEEE International Conference on Evolutionary Computation, pages 61–
66, May 1996.

[25] Sebastian Bourdeauducq. ARTIQ, 2016. https://m-labs.hk/artiq/manual-legacy/.

[26] David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk, Lev
Bishop, Jiayin Chen, Jerry M. Chow, Antonio D. Córcoles, Daniel Egger, Stefan
Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari, Diego Moreda, Paul Na-
tion, Brent Paulovicks, Erick Winston, Christopher J. Wood, James Wootton, and
Jay M. Gambetta. Qiskit Backend Specifications for OpenQASM and OpenPulse
Experiments. arXiv:1809.03452 [quant-ph], September 2018. arXiv: 1809.03452.

[27] Thomas Alexander, Naoki Kanazawa, Daniel J. Egger, Lauren Capelluto, Christo-
pher J. Wood, Ali Javadi-Abhari, and David McKay. Qiskit Pulse: Programming
Quantum Computers Through the Cloud with Pulses. arXiv:2004.06755 [quant-
ph], April 2020. arXiv: 2004.06755.

[28] Guido Van Rossum. Python, 1989. https://www.python.org.

[29] Linus Torvalds. Git. https://git-scm.com/. Manual: https://git-scm.com/docs/user-
manual.

[30] Eelco Dolstra. Nix. https://nixos.org/.

[31] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A.
Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William
Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig
Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P.
Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang,
Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri,
Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexan-
der Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero,
Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony
Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naa-
man, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre
Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan,
Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J.
Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore
White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M.
Martinis. Quantum supremacy using a programmable superconducting processor.
Nature, 574(7779):505–510, October 2019.

244

[32] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh, and Robert
Wisnieff. Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore
Circuits, October 2019. arXiv:1910.09534 [quant-ph].

[33] David P. DiVincenzo. The Physical Implementation of Quan-
tum Computation. Fortschritte der Physik, 48(9-11):771–783,
2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-
3978%28200009%2948%3A9/11%3C771%3A%3AAID-
PROP771%3E3.0.CO%3B2-E.

[34] Erwin Schrödinger. Discussion of Probability Relations between Separated
Systems. Mathematical Proceedings of the Cambridge Philosophical Society,
31(4):555–563, October 1935.

[35] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, October 1982. Number: 5886 Publisher: Nature Publishing
Group.

[36] Howard Barnum, Carlton M. Caves, Christopher A. Fuchs, Richard Jozsa, and
Benjamin Schumacher. Noncommuting Mixed States Cannot Be Broadcast. Phys-
ical Review Letters, 76(15):2818–2821, April 1996. Publisher: American Physical
Society.

[37] V. Bužek and M. Hillery. Quantum copying: Beyond the no-cloning theorem.
Physical Review A, 54(3):1844–1852, September 1996. Publisher: American Phys-
ical Society.

[38] Tommaso Toffoli. Reversible computing. In Jaco de Bakker and Jan van Leeuwen,
editors, Automata, Languages and Programming, Lecture Notes in Computer Sci-
ence, pages 632–644, Berlin, Heidelberg, 1980. Springer.

[39] Laird Egan, Dripto M. Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, De-
bopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R. Brown, Marko Cetina,
and Christopher Monroe. Fault-tolerant control of an error-corrected qubit. Nature,
598(7880):281–286, October 2021.

[40] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.
Elementary gates for quantum computation. Physical Review A, 52(5):3457–3467,
November 1995. Publisher: American Physical Society.

[41] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Review, 41(2):303–332, January 1999.
Publisher: Society for Industrial and Applied Mathematics.

[42] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of Comput-
ing, STOC ’96, pages 212–219, New York, NY, USA, July 1996. Association for
Computing Machinery.

245

[43] Daiwei Zhu, Gregory D. Kahanamoku-Meyer, Laura Lewis, Crystal Noel, Or Katz,
Bahaa Harraz, Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas,
Laird Egan, Alexandru Gheorghiu, Yunseong Nam, Thomas Vidick, Umesh Vazi-
rani, Norman Y. Yao, Marko Cetina, and Christopher Monroe. Interactive Proto-
cols for Classically-Verifiable Quantum Advantage, June 2022. arXiv:2112.05156
[cond-mat, physics:quant-ph].

[44] R. C. Bialczak, M. Ansmann, M. Hofheinz, M. Lenander, E. Lucero, M. Neeley,
A. D. O’Connell, D. Sank, H. Wang, M. Weides, J. Wenner, T. Yamamoto, A. N.
Cleland, and J. M. Martinis. Fast Tunable Coupler for Superconducting Qubits.
Physical Review Letters, 106(6):060501, February 2011. Publisher: American
Physical Society.

[45] Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-Generation
Topology of D-Wave Quantum Processors, February 2020. arXiv:2003.00133
[quant-ph].

[46] Petar Jurcevic, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bo-
gorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki
Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Landers,
Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath Naras-
gond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srini-
vasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J. Wood, Jeng-
Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, and Jay M. Gambetta.
Demonstration of quantum volume 64 on a superconducting quantum computing
system. Quantum Science and Technology, 6(2):025020, March 2021. Publisher:
IOP Publishing.

[47] Jared B. Hertzberg, Eric J. Zhang, Sami Rosenblatt, Easwar Magesan, John A.
Smolin, Jeng-Bang Yau, Vivekananda P. Adiga, Martin Sandberg, Markus Brink,
Jerry M. Chow, and Jason S. Orcutt. Laser-annealing Josephson junctions for yield-
ing scaled-up superconducting quantum processors. npj Quantum Information,
7(1):1–8, August 2021. Number: 1 Publisher: Nature Publishing Group.

[48] Stephen Brierley. Efficient implementation of Quantum circuits with limited qubit
interactions, September 2016. arXiv:1507.04263 [quant-ph].

[49] Dmitri Maslov. Basic circuit compilation techniques for an ion-trap quantum ma-
chine. New Journal of Physics, 19(2):023035, February 2017. arXiv: 1603.07678.

[50] D. Maslov, S. M. Falconer, and M. Mosca. Quantum Circuit Placement. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(4):752–763, April 2008. arXiv: quant-ph/0703256.

[51] Dmitri Maslov, Gerhard W. Dueck, D. Michael Miller, and Camille Negrevergne.
Quantum Circuit Simplification and Level Compaction. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 27(3):436–444, March

246

2008. Conference Name: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems.

[52] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will Sim-
mons, and Seyon Sivarajah. On the qubit routing problem. page 32 pages, 2019.
arXiv:1902.08091 [quant-ph].

[53] Andrew M. Childs, Eddie Schoute, and Cem M. Unsal. Circuit Transformations
for Quantum Architectures. page 24, 2019. arXiv:1902.09102 [quant-ph].

[54] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha
Narang. Qubit Allocation for Noisy Intermediate-Scale Quantum Computers, Oc-
tober 2018. arXiv:1810.08291 [quant-ph].

[55] Siyuan Niu, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial. A
Hardware-Aware Heuristic for the Qubit Mapping Problem in the NISQ Era. IEEE
Transactions on Quantum Engineering, 1:1–14, 2020. Conference Name: IEEE
Transactions on Quantum Engineering.

[56] Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S. Clarke, and A. Y.
Matsuura. Impact of qubit connectivity on quantum algorithm performance. Quan-
tum Science and Technology, 5(2):025009, March 2020. Publisher: IOP Publish-
ing.

[57] Daniel Gottesman. Theory of fault-tolerant quantum computation. Physical Review
A, 57(1):127–137, January 1998. Publisher: American Physical Society.

[58] A. Yu Kitaev. Quantum computations: algorithms and error correction. Russian
Mathematical Surveys, 52(6):1191, December 1997. Publisher: IOP Publishing.

[59] Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm.
Quantum Information & Computation, 6(1):81–95, January 2006.

[60] J. Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simulation.
Nature Physics, 8(4):264–266, April 2012. Number: 4 Publisher: Nature Publish-
ing Group.

[61] Edward Farhi and Sam Gutmann. An Analog Analogue of a Digital Quantum Com-
putation. arXiv:quant-ph/9612026, December 1996. arXiv: quant-ph/9612026.

[62] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. Adiabatic Quantum Computation Is Equivalent to Standard Quantum Com-
putation. SIAM Review, 50(4):755–787, January 2008. Publisher: Society for
Industrial and Applied Mathematics.

[63] R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo, U. Las Heras, R. Bab-
bush, A. G. Fowler, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth,
E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, P. J. J.
O’Malley, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C.

247

White, E. Solano, H. Neven, and John M. Martinis. Digitized adiabatic quantum
computing with a superconducting circuit. Nature, 534(7606):222–226, June 2016.
Number: 7606 Publisher: Nature Publishing Group.

[64] Andrew M. Childs, Edward Farhi, and John Preskill. Robustness of adiabatic
quantum computation. Physical Review A, 65(1), December 2001. arXiv: quant-
ph/0108048.

[65] Antti P. Vepsäläinen, Amir H. Karamlou, John L. Orrell, Akshunna S. Dogra, Ben
Loer, Francisca Vasconcelos, David K. Kim, Alexander J. Melville, Bethany M.
Niedzielski, Jonilyn L. Yoder, Simon Gustavsson, Joseph A. Formaggio, Brent A.
VanDevender, and William D. Oliver. Impact of ionizing radiation on supercon-
ducting qubit coherence. Nature, 584(7822):551–556, August 2020. Number:
7822 Publisher: Nature Publishing Group.

[66] D. Binder, E. C. Smith, and A. B. Holman. Satellite Anomalies from Galactic Cos-
mic Rays. IEEE Transactions on Nuclear Science, 22(6):2675–2680, December
1975. Conference Name: IEEE Transactions on Nuclear Science.

[67] Wen Lin Tan. Cryogenic trapped-ion system for large scale quantum simulation.
PhD thesis, University of Maryland, College Park, 2021.

[68] K. Kim, M.-S. Chang, R. Islam, S. Korenblit, L.-M. Duan, and C. Monroe. Entan-
glement and Tunable Spin-Spin Couplings between Trapped Ions Using Multiple
Transverse Modes. Physical Review Letters, 103(12):120502, September 2009.
Publisher: American Physical Society.

[69] Ehud Altman, Kenneth R. Brown, Giuseppe Carleo, Lincoln D. Carr, Eugene
Demler, Cheng Chin, Brian DeMarco, Sophia E. Economou, Mark Eriksson, Kai-
Mei C. Fu, Markus Greiner, Kaden R. A. Hazzard, Randall G. Hulet, Alicia J. Kol-
lar, Benjamin L. Lev, Mikhail D. Lukin, Ruichao Ma, Xiao Mi, Shashank Misra,
Christopher Monroe, Kater Murch, Zaira Nazario, Kang-Kuen Ni, Andrew C. Pot-
ter, Pedram Roushan, Mark Saffman, Monika Schleier-Smith, Irfan Siddiqi, Ray-
mond Simmonds, Meenakshi Singh, I. B. Spielman, Kristan Temme, David S.
Weiss, Jelena Vuckovic, Vladan Vuletic, Jun Ye, and Martin Zwierlein. Quan-
tum Simulators: Architectures and Opportunities. arXiv:1912.06938 [cond-mat,
physics:physics, physics:quant-ph], December 2019. arXiv: 1912.06938.

[70] G. Pagano, P. W. Hess, H. B. Kaplan, W. L. Tan, P. Richerme, P. Becker, A. Kypri-
anidis, J. Zhang, E. Birckelbaw, M. R. Hernandez, Y. Wu, and C. Monroe. Cryo-
genic trapped-ion system for large scale quantum simulation. Quantum Science
and Technology, 4(1):014004, October 2018. Publisher: IOP Publishing.

[71] J. Zhang, P. W. Hess, A. Kyprianidis, P. Becker, A. Lee, J. Smith, G. Pagano, I.-D.
Potirniche, A. C. Potter, A. Vishwanath, N. Y. Yao, and C. Monroe. Observation of
a discrete time crystal. Nature, 543(7644):217–220, March 2017. Number: 7644
Publisher: Nature Publishing Group.

248

[72] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, P. Becker, H. Kaplan, A. V.
Gorshkov, Z.-X. Gong, and C. Monroe. Observation of a many-body dynamical
phase transition with a 53-qubit quantum simulator. Nature, 551(7682):601–604,
November 2017. Number: 7682 Publisher: Nature Publishing Group.

[73] Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arinjoy
De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christo-
pher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen Jordan,
Alexey V. Gorshkov, and Christopher Monroe. Quantum approximate optimization
of the long-range Ising model with a trapped-ion quantum simulator. Proceedings
of the National Academy of Sciences, 117(41):25396–25401, October 2020. Pub-
lisher: Proceedings of the National Academy of Sciences.

[74] A. Kyprianidis, F. Machado, W. Morong, P. Becker, K. S. Collins, D. V. Else,
L. Feng, P. W. Hess, C. Nayak, G. Pagano, N. Y. Yao, and C. Monroe. Observation
of a prethermal discrete time crystal. Science, 372(6547):1192–1196, June 2021.
Publisher: American Association for the Advancement of Science.

[75] W. L. Tan, P. Becker, F. Liu, G. Pagano, K. S. Collins, A. De, L. Feng, H. B. Ka-
plan, A. Kyprianidis, R. Lundgren, W. Morong, S. Whitsitt, A. V. Gorshkov, and
C. Monroe. Domain-wall confinement and dynamics in a quantum simulator. Na-
ture Physics, 17(6):742–747, June 2021. Number: 6 Publisher: Nature Publishing
Group.

[76] W. Morong, F. Liu, P. Becker, K. S. Collins, L. Feng, A. Kyprianidis, G. Pagano,
T. You, A. V. Gorshkov, and C. Monroe. Observation of Stark many-body local-
ization without disorder. Nature, 599(7885):393–398, November 2021. Number:
7885 Publisher: Nature Publishing Group.

[77] P. W. Hess, P. Becker, H. B. Kaplan, A. Kyprianidis, A. C. Lee, B. Neyenhuis,
G. Pagano, P. Richerme, C. Senko, J. Smith, W. L. Tan, J. Zhang, and C. Mon-
roe. Non-thermalization in trapped atomic ion spin chains. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
375(2108):20170107, December 2017. Publisher: Royal Society.

[78] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Reviews
of Modern Physics, 90(1):015002, January 2018. Publisher: American Physical
Society.

[79] Sergey Novikov, Robert Hinkey, Steven Disseler, James I Basham, Tameem Al-
bash, Andrew Risinger, David Ferguson, Daniel A. Lidar, and Kenneth M. Zick.
Exploring More-Coherent Quantum Annealing. In 2018 IEEE International Con-
ference on Rebooting Computing (ICRC), pages 1–7, November 2018. arXiv:
1809.04485.

[80] Satoshi Matsubara, Motomu Takatsu, Toshiyuki Miyazawa, Takayuki Shibasaki,
Yasuhiro Watanabe, Kazuya Takemoto, and Hirotaka Tamura. Digital Annealer for

249

High-Speed Solving of Combinatorial optimization Problems and Its Applications.
In 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC),
pages 667–672, January 2020. ISSN: 2153-697X.

[81] Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hi-
rotaka Tamura, and Helmut G. Katzgraber. Physics-Inspired Optimization for
Quadratic Unconstrained Problems Using a Digital Annealer. Frontiers in Physics,
7, 2019.

[82] Hayato Goto, Kosuke Tatsumura, and Alexander R. Dixon. Combinatorial opti-
mization by simulating adiabatic bifurcations in nonlinear Hamiltonian systems.
Science Advances, 5(4):eaav2372, April 2019. Publisher: American Association
for the Advancement of Science.

[83] Hiroki Oshiyama and Masayuki Ohzeki. Benchmark of quantum-inspired heuris-
tic solvers for quadratic unconstrained binary optimization. Scientific Reports,
12(1):2146, February 2022. Number: 1 Publisher: Nature Publishing Group.

[84] Eleanor G. Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B. Do, Elicia M.
Prystay, and Vadim N. Smelyanskiy. A case study in programming a quantum an-
nealer for hard operational planning problems. Quantum Information Processing,
14(1):1–36, January 2015.

[85] Wolfgang Paul. Electromagnetic traps for charged and neutral particles. Reviews
of Modern Physics, 62(3):531–540, July 1990.

[86] R. T. Sutherland, R. Srinivas, S. C. Burd, H. M. Knaack, A. C. Wilson, D. J.
Wineland, D. Leibfried, D. T. C. Allcock, D. H. Slichter, and S. B. Libby. Laser-
free trapped-ion entangling gates with simultaneous insensitivity to qubit and mo-
tional decoherence. Physical Review A, 101(4):042334, April 2020. Publisher:
American Physical Society.

[87] R. T. Sutherland, R. Srinivas, S. C. Burd, D. Leibfried, A. C. Wilson, D. J.
Wineland, D. T. C. Allcock, D. H. Slichter, and S. B. Libby. Versatile laser-free
trapped-ion entangling gates. New Journal of Physics, 21(3):033033, March 2019.
Publisher: IOP Publishing.

[88] R. Srinivas, S. C. Burd, H. M. Knaack, R. T. Sutherland, A. Kwiatkowski,
S. Glancy, E. Knill, D. J. Wineland, D. Leibfried, A. C. Wilson, D. T. C. All-
cock, and D. H. Slichter. High-fidelity laser-free universal control of trapped ion
qubits. Nature, 597(7875):209–213, September 2021. Number: 7875 Publisher:
Nature Publishing Group.

[89] Ye Wang, Mark Um, Junhua Zhang, Shuoming An, Ming Lyu, Jing-Ning Zhang,
L.-M. Duan, Dahyun Yum, and Kihwan Kim. Single-qubit quantum memory ex-
ceeding ten-minute coherence time. Nature Photonics, 11(10):646–650, October
2017.

250

[90] Pengfei Wang, Chun-Yang Luan, Mu Qiao, Mark Um, Junhua Zhang, Ye Wang,
Xiao Yuan, Mile Gu, Jingning Zhang, and Kihwan Kim. Single ion qubit with
estimated coherence time exceeding one hour. Nature Communications, 12(1):233,
January 2021. Number: 1 Publisher: Nature Publishing Group.

[91] David Hucul, Justin E. Christensen, Eric R. Hudson, and Wesley C. Camp-
bell. Spectroscopy of a Synthetic Trapped Ion Qubit. Physical Review Letters,
119(10):100501, September 2017. Publisher: American Physical Society.

[92] Falco Reissig, Klaus Kopka, and Constantin Mamat. The impact of barium isotopes
in radiopharmacy and nuclear medicine – From past to presence. Nuclear Medicine
and Biology, 98-99:59–68, July 2021.

[93] Laird Nicholas Egan. Scaling Quantum Computers with Long Chains of Trapped
Ions. PhD thesis, University of Maryland, College Park, 2021. Accepted: 2021-
07-14T05:31:59Z.

[94] Joshua M. Wilson, Julia N. Tilles, Raymond A. Haltli, Eric Ou, Matthew G. Blain,
Susan M. Clark, and Melissa C. Revelle. In situ detection of RF breakdown on
microfabricated surface ion traps. Journal of Applied Physics, 131(13):134401,
April 2022. Publisher: American Institute of Physics.

[95] James D. Siverns and Qudsia Quraishi. Ion trap architectures and new directions.
Quantum Information Processing, 16(12):314, November 2017.

[96] D. Stick, W. K. Hensinger, S. Olmschenk, M. J. Madsen, K. Schwab, and C. Mon-
roe. Ion trap in a semiconductor chip. Nature Physics, 2(1):36–39, January 2006.
Number: 1 Publisher: Nature Publishing Group.

[97] Peter Lukas Wilhelm Maunz. High Optical Access Trap 2.0. Technical Report
SAND-2016-0796R, Sandia National Lab. (SNL-NM), Albuquerque, NM (United
States), January 2016.

[98] Daniel Lobser, Matthew G. Blain, Craig William Hogle, Melissa Revelle,
Daniel Lynn Stick, Christopher G. Yale, and Peter Lukas Wilhelm Maunz. Quan-
tum and Classical Control of Ions in Sandia’s HOA Trap. Technical Report
SAND2017-8584C, Sandia National Lab. (SNL-NM), Albuquerque, NM (United
States), August 2017.

[99] Daniel Lobser, Matthew Blain, Craig Hogle, Melissa Revelle, Daniel Stick,
Christopher Yale, and Peter Maunz. Precision Control of Ions in Sandia’s HOA
Trap. Technical Report SAND2019-11932C, Sandia National Lab. (SNL-NM),
Albuquerque, NM (United States), October 2019.

[100] Peter Lukas Wilhelm Maunz, Craig Robert Clark, Susan M. Clark, Paul James
Resnick, Christian Lew Arrington, Francisco M. Benito, Robert R. Boye, A. Robert
Ellis, Raymond A. Haltli, Edwin J. Heller, Andrew E. Hollowell, Shanalyn A.
Kemme, Becky G. Loviza, Jonathan A. Mizrahi, Anathea C. Ortega, David

251

Scrymgeour, Jonathan David Sterk, Christopher P. Tigges, Amber Lynn Young,
Daniel Lynn Stick, and Matthew Glenn Blain. Sandia Micro-fabricated Ion Traps
for the MUSIQC architecture. Technical Report SAND2013-7302C, Sandia Na-
tional Lab. (SNL-NM), Albuquerque, NM (United States), August 2013.

[101] Peter Lukas Wilhelm Maunz, Susan M. Clark, Craig William Hogle, Raymond A.
Haltli, Daniel Lobser, Jessica Marie Pehr, Melissa Revelle, Brandon Ruzic,
Christopher G. Yale, and Matthew G. Blain. Microfabricated ion traps for LogiQal
Qubits. Technical Report SAND2020-0374C, Sandia National Lab. (SNL-NM),
Albuquerque, NM (United States), January 2020.

[102] Peter Lukas Wilhelm Maunz, Craig Robert Clark, Raymond A. Haltli, Andrew E.
Hollowell, John F. Rembetski, Paul J. Resnick, Jonathan David Sterk, Daniel Lynn
Stick, Boyan Tabakov, and Matthew G. Blain. Characterization of a High-Optical-
Access surface trap optimized for quantum information processing. Technical
Report SAND2015-1045C, Sandia National Lab. (SNL-NM), Albuquerque, NM
(United States), February 2015.

[103] Daniel Lobser, Matthew G. Blain, Kevin Michael Fortier, Raymond A. Haltli, An-
drew E. Hollowell, Jonathan Mizrahi, Jonathan David Sterk, and Peter Lukas Wil-
helm Maunz. A Demonstration of the HOA Trap a Versatile Microfabricated Sur-
face Ion Trap. Technical Report SAND2016-8060C, Sandia National Lab. (SNL-
NM), Albuquerque, NM (United States), August 2016.

[104] William D. Phillips. Nobel Lecture: Laser cooling and trapping of neutral atoms.
Reviews of Modern Physics, 70(3):721–741, July 1998. Publisher: American Phys-
ical Society.

[105] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. S. All-
man, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer, C. Ryan-Anderson, and
B. Neyenhuis. Demonstration of the trapped-ion quantum CCD computer architec-
ture. Nature, 592(7853):209–213, April 2021. Number: 7853 Publisher: Nature
Publishing Group.

[106] Harvey B. Kaplan. Many-Body Dephasing in a Cryogenic Trapped Ion Quantum
Simulator. PhD thesis, University of Maryland, College Park, 2019.

[107] D. J. Wineland and Wayne M. Itano. Laser cooling of atoms. Physical Review A,
20(4):1521–1540, October 1979. Publisher: American Physical Society.

[108] Crystal Noel. High temperature studies of electric-field noise in a surface ion trap.
PhD thesis, University of California, Berkeley, Berkeley, CA, 2019.

[109] J.-S. Chen, K. Wright, N. C. Pisenti, D. Murphy, K. M. Beck, K. Landsman,
J. M. Amini, and Y. Nam. Efficient sideband cooling protocol for long trapped-
ion chains. Physical Review A, 102(4):043110, October 2020. arXiv: 2002.04133.

252

[110] Wayne M. Itano and D. J. Wineland. Laser cooling of ions stored in harmonic and
penning traps. Phys. Rev. A, 25:35–54, Jan 1982.

[111] C. Monroe, D. M. Meekhof, B. E. King, S. R. Jefferts, W. M. Itano, D. J. Wineland,
and P. Gould. Resolved-Sideband Raman Cooling of a Bound Atom to the 3D
Zero-Point Energy. Physical Review Letters, 75(22):4011–4014, November 1995.
Publisher: American Physical Society.

[112] S. Olmschenk, K. C. Younge, D. L. Moehring, D. N. Matsukevich, P. Maunz, and
C. Monroe. Manipulation and detection of a trapped Yb+ hyperfine qubit. Physical
Review A, 76(5):052314, November 2007.

[113] Caroline Figgatt. Building and Programming a Universal Ion Trap Quantum Com-
puter. PhD thesis, University of Maryland, College Park, 2018. Accepted: 2018-
07-17T06:20:57Z.

[114] Kevin Antony Landsman. CONSTRUCTION, OPTIMIZATION, AND APPLICA-
TIONS OF A SMALL TRAPPED-ION QUANTUM COMPUTER. PhD thesis, Uni-
versity of Maryland, College Park, 2019. Accepted: 2019-06-19T05:42:06Z.

[115] Naleli Matjelo, Nancy Payne, Charles Rigby, and Ncamiso Khanyile. Demonstra-
tion Of Rabi-Flops With Ytterbium 171 Trapped-Ion Qubits. International Journal
of Scientific and Research Publications (IJSRP), 11(7):137–153, July 2021.

[116] Rachel Noek, Geert Vrijsen, Daniel Gaultney, Emily Mount, Taehyun Kim, Peter
Maunz, and Jungsang Kim. High Speed, High Fidelity Detection of an Atomic
Hyperfine Qubit. Optics Letters, 38(22):4735, November 2013. arXiv: 1304.3511.

[117] D. B. Hume, T. Rosenband, and D. J. Wineland. High-Fidelity Adaptive Qubit
Detection through Repetitive Quantum Nondemolition Measurements. Physical
Review Letters, 99(12):120502, September 2007. Publisher: American Physical
Society.

[118] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Im-
reh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas. High-Fidelity
Readout of Trapped-Ion Qubits. Physical Review Letters, 100(20):200502, May
2008. Publisher: American Physical Society.

[119] Daiwei Zhu. A study of Quantum ALgorithms with Ion-trap Quantum Computers.
PhD thesis, University of Maryland, College Park, 2021. Accepted: 2021-09-
16T05:33:03Z.

[120] M. Cetina, L.N. Egan, C. Noel, M.L. Goldman, D. Biswas, A.R. Risinger, D. Zhu,
and C. Monroe. Control of Transverse Motion for Quantum Gates on Individually
Addressed Atomic Qubits. PRX Quantum, 3(1):010334, March 2022. Publisher:
American Physical Society.

253

[121] V. Negnevitsky, M. Marinelli, K. K. Mehta, H.-Y. Lo, C. Flühmann, and J. P. Home.
Repeated multi-qubit readout and feedback with a mixed-species trapped-ion reg-
ister. Nature, 563(7732):527–531, November 2018. Number: 7732 Publisher:
Nature Publishing Group.

[122] Owen Astrachan. Bubble sort: an archaeological algorithmic analysis. ACM
SIGCSE Bulletin, 35(1):1–5, January 2003.

[123] Thomas H. Cormen, editor. Introduction to algorithms. MIT Press, Cambridge,
Mass, 3rd ed edition, 2009. OCLC: ocn311310321.

[124] Hartmut Haffner. Quantum computing with trapped ions. Journal of the Indian
Institute of Science, 89(3):317–331, 2009. Number: 3.

[125] D. Hayes, D. N. Matsukevich, P. Maunz, D. Hucul, Q. Quraishi, S. Olm-
schenk, W. Campbell, J. Mizrahi, C. Senko, and C. Monroe. Entanglement of
Atomic Qubits Using an Optical Frequency Comb. Physical Review Letters,
104(14):140501, April 2010. Publisher: American Physical Society.

[126] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm. Simple Pulses for
Elimination of Leakage in Weakly Nonlinear Qubits. Physical Review Letters,
103(11):110501, September 2009. Publisher: American Physical Society.

[127] J. M. Gambetta, F. Motzoi, S. T. Merkel, and F. K. Wilhelm. Analytic control meth-
ods for high-fidelity unitary operations in a weakly nonlinear oscillator. Physical
Review A, 83(1):012308, January 2011. Publisher: American Physical Society.

[128] David C. McKay, Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and
Jay M. Gambetta. Efficient Z gates for quantum computing. Physical Review
A, 96(2):022330, August 2017. Publisher: American Physical Society.

[129] Kenneth R. Brown, Aram W. Harrow, and Isaac L. Chuang. Arbitrarily accurate
composite pulse sequences. Physical Review A, 70(5):052318, November 2004.
Publisher: American Physical Society.

[130] S. Wimperis. Broadband, Narrowband, and Passband Composite Pulses for Use
in Advanced NMR Experiments. Journal of Magnetic Resonance, Series A,
109(2):221–231, August 1994.

[131] G.J. Milburn, S. Schneider, and D.F.V James. Ion Trap Quantum Com-
puting with Warm Ions. Fortschritte der Physik, 48(9-11):801–810,
2000. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/1521-
3978%28200009%2948%3A9/11%3C801%3A%3AAID-
PROP801%3E3.0.CO%3B2-1.

[132] Shi-Liang Zhu, C. Monroe, and L.-M. Duan. Trapped Ion Quantum Computation
with Transverse Phonon Modes. Physical Review Letters, 97(5):050505, August
2006. Publisher: American Physical Society.

254

[133] Timothy Andrew Manning. Quantum Information Processing with Trapped Ion
Chains. PhD thesis, University of Maryland, College Park, 2014. Accepted: 2014-
06-24T05:39:32Z.

[134] Mohamed Abdelhafez, Brian Baker, András Gyenis, Pranav Mundada, Andrew A.
Houck, David Schuster, and Jens Koch. Universal gates for protected supercon-
ducting qubits using optimal control. Physical Review A, 101(2):022321, February
2020. Publisher: American Physical Society.

[135] Shantanu Debnath. A Programmable Five Qubit Quantum Computer Using
Trapped Atomic Ions. PhD thesis, 2016. Accepted: 2017-01-24T06:43:50Z.

[136] Grzegorz Kasprowicz, Paweł Kulik, Michal Gaska, Tomasz Przywozki, Krzysztof
Pozniak, Jakub Jarosinski, Joseph W. Britton, Joseph W. Britton, Thomas Harty,
Chris Balance, Weida Zhang, David Nadlinger, Daniel Slichter, David Allcock,
Sébastien Bourdeauducq, Robert Jördens, and Krzysztof Pozniak. ARTIQ and
Sinara: Open Software and Hardware Stacks for Quantum Physics. In OSA Quan-
tum 2.0 Conference (2020), paper QTu8B.14, page QTu8B.14. Optica Publishing
Group, September 2020.

[137] Paweł Kulik, Grzegorz Kasprowicz, and Michał Gąska. Driver module for quantum
computer experiments: Kasli. In Photonics Applications in Astronomy, Commu-
nications, Industry, and High-Energy Physics Experiments 2018, volume 10808,
pages 1255–1258. SPIE, October 2018.

[138] James Tandon. The OpenRISC processor: open hardware and Linux. Linux Jour-
nal, 2011(212):6:6, December 2011.

[139] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of
IEEE 754-2008), pages 1–84, July 2019. Conference Name: IEEE Std 754-2019
(Revision of IEEE 754-2008).

[140] AD9910 Datasheet. Datasheet, Analog Devices, October 2016.
https://www.analog.com/media/en/technical-documentation/data-
sheets/ad9910.pdf.

[141] Leon Riesebos, Brad Bondurant, Jacob Whitlow, Junki Kim, Mark Kuzyk, Tianyi
Chen, Samuel Phiri, Ye Wang, Chao Fang, Andrew Van Horn, Jungsang Kim,
and Kenneth R. Brown. Modular software for real-time quantum control systems.
In 2022 IEEE International Conference on Quantum Computing and Engineering
(QCE), pages 545–555, September 2022.

[142] Leon Riesebos, Brad Bondurant, and Kenneth R. Brown. Universal Graph-Based
Scheduling for Quantum Systems. IEEE Micro, 41(5):57–65, September 2021.
Conference Name: IEEE Micro.

[143] Jerry Moy Chow. Quantum information processing with superconducting qubits.
Ph.D., Yale University, United States – Connecticut, 2010. ISBN: 9781124089010.

255

[144] Jonathan Albert Mizrahi. Ultrafast Control of Spin and Motion in Trapped Ions.
PhD thesis, University of Maryland, College Park, 2013.

[145] Daniel Lobser, Joshua Goldberg, Andrew J Landahl, Peter Maunz, Benjamin C A
Morrison, Kenneth Rudinger, Antonio Russo, and Daniel Stick. JaqalPaw: A
Guide to Defining Pulses and Waveforms for Jaqal. November 2021.

[146] I. V. Inlek, G. Vittorini, D. Hucul, C. Crocker, and C. Monroe. Quantum gates with
phase stability over space and time. Physical Review A, 90(4):042316, October
2014. Publisher: American Physical Society.

[147] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and
Steffen J. Glaser. Optimal control of coupled spin dynamics: design of NMR
pulse sequences by gradient ascent algorithms. Journal of Magnetic Resonance,
172(2):296–305, February 2005.

[148] Christopher D. B. Bentley, Harrison Ball, Michael J. Biercuk, Andre R. R.
Carvalho, Michael R. Hush, and Harry J. Slatyer. Numeric Optimization
for Configurable, Parallel, Error-Robust Entangling Gates in Large Ion Reg-
isters. Advanced Quantum Technologies, 3(11):2000044, 2020. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202000044.

[149] Mingyu Kang, Qiyao Liang, Bichen Zhang, Shilin Huang, Ye Wang, Chao Fang,
Jungsang Kim, and Kenneth R. Brown. Batch Optimization of Frequency-
Modulated Pulses for Robust Two-Qubit Gates in Ion Chains. Physical Review
Applied, 16(2):024039, August 2021. Publisher: American Physical Society.

[150] R. Bowler, U. Warring, J. W. Britton, B. C. Sawyer, and J. Amini. Arbitrary wave-
form generator for quantum information processing with trapped ions. Review of
Scientific Instruments, 84(3):033108, March 2013. Publisher: American Institute
of Physics.

[151] Robert Jördens. Pdq2 V2.5, February 2016.

[152] Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen,
and Robin Blume-Kohout. Detecting crosstalk errors in quantum information pro-
cessors. arXiv:1908.09855 [quant-ph], August 2019. arXiv: 1908.09855.

[153] Austin G. Fowler, William F. Thompson, Zhizhong Yan, Ashley M. Stephens,
B. L. T. Plourde, and Frank K. Wilhelm. Long-range coupling and scalable ar-
chitecture for superconducting flux qubits. Physical Review B, 76(17), November
2007. arXiv: cond-mat/0702620.

[154] Prakash Murali, David C. McKay, Margaret Martonosi, and Ali Javadi-Abhari.
Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Comput-
ers. Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1001–1016,
March 2020. arXiv: 2001.02826.

256

[155] Alireza Seif, Kevin A. Landsman, Norbert M. Linke, Caroline Figgatt, C. Monroe,
and Mohammad Hafezi. Machine learning assisted readout of trapped-ion qubits.
Journal of Physics B: Atomic, Molecular and Optical Physics, 51(17):174006,
September 2018. arXiv:1804.07718 [quant-ph].

[156] Susan M. Clark, Daniel Lobser, Melissa C. Revelle, Christopher G. Yale, David
Bossert, Ashlyn D. Burch, Matthew N. Chow, Craig W. Hogle, Megan Ivory, Jes-
sica Pehr, Bradley Salzbrenner, Daniel Stick, William Sweatt, Joshua M. Wilson,
Edward Winrow, and Peter Maunz. Engineering the Quantum Scientific Comput-
ing Open User Testbed. IEEE Transactions on Quantum Engineering, 2:1–32,
2021. Conference Name: IEEE Transactions on Quantum Engineering.

[157] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open
Quantum Assembly Language. arXiv:1707.03429 [quant-ph], July 2017. arXiv:
1707.03429.

[158] Dripto M. Debroy, Laird Egan, Crystal Noel, Andrew Risinger, Daiwei Zhu, De-
bopriyo Biswas, Marko Cetina, Chris Monroe, and Kenneth R. Brown. Optimizing
Stabilizer Parities for Improved Logical Qubit Memories. Physical Review Letters,
127(24):240501, December 2021. arXiv:2105.05068 [quant-ph].

[159] Crystal Noel, Pradeep Niroula, Daiwei Zhu, Andrew Risinger, Laird Egan, Debo-
priyo Biswas, Marko Cetina, Alexey V. Gorshkov, Michael J. Gullans, David A.
Huse, and Christopher Monroe. Observation of measurement-induced quantum
phases in a trapped-ion quantum computer. Nature Physics, 18(7):760–764, July
2022. arXiv:2106.05881 [quant-ph].

[160] Kushal Seetharam, Debopriyo Biswas, Crystal Noel, Andrew Risinger, Daiwei
Zhu, Or Katz, Sambuddha Chattopadhyay, Marko Cetina, Christopher Monroe,
Eugene Demler, and Dries Sels. Digital quantum simulation of NMR experiments,
September 2021. arXiv:2109.13298 [physics, physics:quant-ph].

[161] Or Katz, Lei Feng, Andrew Risinger, Christopher Monroe, and Marko Cetina.
Demonstration of three- and four-body interactions between trapped-ion spins,
September 2022. arXiv:2209.05691 [physics, physics:quant-ph].

[162] Edward Fredkin and Tommaso Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21(3):219–253, April 1982.

[163] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elemen-
tary arithmetic operations. Physical Review A, 54(1):147–153, July 1996. Pub-
lisher: American Physical Society.

[164] Adam Paetznick and Ben W. Reichardt. Universal Fault-Tolerant Quantum Com-
putation with Only Transversal Gates and Error Correction. Physical Review Let-
ters, 111(9):090505, August 2013. Publisher: American Physical Society.

257

[165] Yunseong Nam, Jwo-Sy Chen, Neal C. Pisenti, Kenneth Wright, Conor Delaney,
Dmitri Maslov, Kenneth R. Brown, Stewart Allen, Jason M. Amini, and Joel Apis-
dorf. Ground-state energy estimation of the water molecule on a trapped-ion quan-
tum computer. npj Quantum Information, 6(1):1–6, 2020. Publisher: Nature Pub-
lishing Group.

[166] Vivek V. Shende and Igor L. Markov. On the CNOT-cost of TOFFOLI gates,
March 2008. arXiv:0803.2316 [quant-ph].

[167] Yong He, Ming-Xing Luo, E. Zhang, Hong-Ke Wang, and Xiao-Feng Wang. De-
compositions of n-qubit Toffoli Gates with Linear Circuit Complexity. Interna-
tional Journal of Theoretical Physics, 56(7):2350–2361, July 2017.

[168] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79,
August 2018. Publisher: Verein zur Förderung des Open Access Publizierens in
den Quantenwissenschaften.

[169] Jonathan M. Baker, Casey Duckering, Alexander Hoover, and Frederic T. Chong.
Decomposing Quantum Generalized Toffoli with an Arbitrary Number of Ancilla,
April 2019. arXiv:1904.01671 [quant-ph].

[170] Yunong Shi, Pranav Gokhale, Prakash Murali, Jonathan M. Baker, Casey Ducker-
ing, Yongshan Ding, Natalie C. Brown, Christopher Chamberland, Ali Javadi Ab-
hari, Andrew W. Cross, David I. Schuster, Kenneth R. Brown, Margaret Martonosi,
and Frederic T. Chong. Resource-Efficient Quantum Computing by Breaking Ab-
stractions. Proceedings of the IEEE, 108(8):1353–1370, August 2020. arXiv:
2011.00028.

[171] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman, D. Zhu, D. Maslov, and
C. Monroe. Parallel entangling operations on a universal ion-trap quantum com-
puter. Nature, 572(7769):368–372, August 2019. Number: 7769 Publisher: Nature
Publishing Group.

[172] J. I. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions. Physi-
cal Review Letters, 74(20):4091–4094, May 1995. Publisher: American Physical
Society.

[173] Or Katz, Marko Cetina, and Christopher Monroe. N-body interactions
between trapped ion qubits via spin-dependent squeezing, February 2022.
arXiv:2202.04230 [physics, physics:quant-ph].

[174] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt,
M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe. Experi-
mental entanglement of four particles. Nature, 404(6775):256–259, March 2000.
Number: 6775 Publisher: Nature Publishing Group.

[175] D. Kielpinski, C. Monroe, and D. J. Wineland. Architecture for a large-scale ion-
trap quantum computer. Nature, 417(6890):709–711, June 2002. Number: 6890
Publisher: Nature Publishing Group.

258

[176] Steven Balensiefer, Lucas Kregor-Stickles, and Mark Oskin. An Evaluation
Framework and Instruction Set Architecture for Ion-Trap Based Quantum Micro-
Architectures. In Proceedings of the 32nd annual international symposium on
Computer Architecture, ISCA ’05, pages 186–196, USA, May 2005. IEEE Com-
puter Society.

[177] Prakash Murali, Dripto M. Debroy, Kenneth R. Brown, and Margaret
Martonosi. Architecting Noisy Intermediate-Scale Trapped Ion Quantum Com-
puters. arXiv:2004.04706 [quant-ph], April 2020. arXiv: 2004.04706.

[178] R. Bradford Blakestad. Transport of trapped-ion qubits within a scalable quantum
processor. Ph.D., University of Colorado at Boulder, United States – Colorado,
2010. ISBN: 9781124193885.

[179] Ksenia Sosnova. Mixed-Species Ion Chains for Quantum Networks. PhD thesis,
University of Maryland, College Park, 2020.

[180] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar. Approximate counting
of inversions in a data stream. In Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, STOC ’02, pages 370–379, New York, NY,
USA, May 2002. Association for Computing Machinery.

[181] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance,
K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance. High-Rate, High-
Fidelity Entanglement of Qubits Across an Elementary Quantum Network. Phys-
ical Review Letters, 124(11):110501, March 2020. Publisher: American Physical
Society.

[182] D. P. Nadlinger, P. Drmota, B. C. Nichol, G. Araneda, D. Main, R. Srinivas, D. M.
Lucas, C. J. Ballance, K. Ivanov, E. Y.-Z. Tan, P. Sekatski, R. L. Urbanke, R. Ren-
ner, N. Sangouard, and J.-D. Bancal. Experimental quantum key distribution cer-
tified by Bell’s theorem. Nature, 607(7920):682–686, July 2022. Number: 7920
Publisher: Nature Publishing Group.

[183] B. C. Nichol, R. Srinivas, D. P. Nadlinger, P. Drmota, D. Main, G. Araneda, C. J.
Ballance, and D. M. Lucas. An elementary quantum network of entangled opti-
cal atomic clocks. Nature, 609(7928):689–694, September 2022. Number: 7928
Publisher: Nature Publishing Group.

[184] C. J. Ballance, L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, J. F. Good-
win, P. Drmota, and D. M. Lucas. Networking Trapped-ion Quantum Comput-
ers. In Quantum Information and Measurement (QIM) V: Quantum Technologies
(2019), paper S2D.1, page S2D.1. Optica Publishing Group, April 2019.

[185] Christopher J. Ballance. High-Fidelity Quantum Logic in Ca+. PhD thesis, Uni-
versity of Oxford, 2014.

259

[186] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and
J. Kim. Large-scale modular quantum-computer architecture with atomic memory
and photonic interconnects. Physical Review A, 89(2), February 2014.

[187] Conda, 2012. https://docs.conda.io/en/latest/.

[188] Pipenv. https://pipenv.pypa.io/en/latest/.

[189] Elijah Newren. git-filter-repo, November 2021. https://github.com/newren/git-
filter-repo.

[190] venv. https://docs.python.org/3/library/venv.html.

[191] Poetry, February 2018. https://python-poetry.org/.

[192] Eelco Dolstra. The purely functional software deployment model. PhD thesis,
Utrecht University, Netherlands, 2006. OCLC: 71702886.

[193] J. Hughes. Why Functional Programming Matters. The Computer Journal,
32(2):98–107, January 1989.

[194] Windows Subsystem for Linux (WSL). https://docs.microsoft.com/en-
us/windows/wsl/install.

[195] Nixpkgs. https://github.com/NixOS/nixpkgs.

[196] Sebastian Bourdeauducq. M-Labs Nix Scripts. https://git.m-labs.hk/M-Labs/nix-
scripts.

[197] Marcus R. Munafò, Brian A. Nosek, Dorothy V. M. Bishop, Katherine S. But-
ton, Christopher D. Chambers, Nathalie Percie du Sert, Uri Simonsohn, Eric-Jan
Wagenmakers, Jennifer J. Ware, and John P. A. Ioannidis. A manifesto for repro-
ducible science. Nature Human Behaviour, 1(1):1–9, January 2017. Number: 1
Publisher: Nature Publishing Group.

[198] Lorri, October 2022. https://github.com/nix-community/lorri.

260

Index

|n⟩, 67
171Yb+

Energy Levels, 60
State Measurement &

Discrimination, 72

Atoms
Atomic Levels, 60

Chain Operations
Split-Merge, 184

Collisions
Reordering, 78

Cooling
Doppler Cooling, 67
Doppler Limit, 68
Sideband Cooling, 70

Decay Rate, 60
Doppler Limit, 68

Gates
N-Body, 162
Native Quantum Gates, 44
Toffoli, 162

Git
Overview, 216
Suggested Workflow, 222
Usage in Physics, 220

Hardware
Ion Trap, 52

Ion Indexing
Center-indexed, 182
Comparison, 181
One-indexed, 180

Zero-indexed, 180
Ion Split-Merge, 184
Ion Trap, 54

Modes
Phonon, 67

Octet, 121
Licensing, 121

Pauli Matrices, 21
Phonons, 67
PulseCompiler, 144

AOM Nonlinearity, 214
Assumptions, 153
Backend, 158
Converting Circuits, 155
Implementation, 146
Optimizations, 214
Overview, 146
Schedule modifications, 214
Schedule to ToneData Conversion,

159
Schedules, 153

Python, 205

Quanta
Motional, 67

Registers
Digital, 14
Quantum, 22

RFSoC
Frequency Feedback, 127
Frequency Feedforward, 127
Multiple boards, 126
Output Modulation, 151

261

Physical Hardware, 121

States
Alternative Representations, 15
Common Quantum, 18
Digital, 14
Quantum, 14

Units

Machine Units, 111

Waveforms
Backend, 158
Converting from Circuits, 155
Generator Options, 119
OpenPulse, 152
OpenPulse vs PulseCompiler, 153
Specification, 144

262

	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Program Listings
	List of Abbreviations and Definitions
	Introduction
	Classical Computers
	Quantum Computing
	Applications of Quantum Computing
	Current State of Quantum Computing

	Chapter Summaries
	ch:introduction: Introduction
	ch:quantuminfo: Quantum Computing Basics
	ch:iontrapdetails: Ion Trap Quantum Computing
	ch:controlsystemdesign: Control System Design
	ch:rfsoc: RFSoC-based Coherent Control System
	ch:pulsecompilerwaveformdescriptions: PulseCompiler Waveform Synthesis & Specification
	ch:experiments: Experiments with Ion Trap Control System
	ch:advionops: Advanced Ion Trap Operations
	Appendices

	Quantum Computing Basics
	Quantum Computing Overview
	Motivation for Quantum Computing

	Quantum vs Classical Computing
	Criteria for a Quantum Computer

	Quantum States
	Digital States
	Qubit
	Multi-Qubit States
	Key Quantum Physics Principles

	Quantum Operations
	State Preparation
	Single-Qubit Operations
	Multi-Qubit Operations
	Quantum State Readout

	Quantum Algorithm Abstractions
	Quantum Circuit Model

	Breaking Abstractions: Hardware Details
	Qubit labels: Physical vs Virtual
	Qubit Connectivity
	Native Gate Set

	Alternative Quantum Computing Paradigms
	Quantum Simulation vs Gate-Model
	Adiabatic Quantum Computing vs Gate-Model

	Ion Trap Quantum Computing
	What is a Trapped Ion Quantum Computer?
	Ytterbium Ions
	Ion Trap Physical Hardware
	Ion Trap
	Out-of-Vacuum Components

	171Yb+ Atomic Physics
	What are atomic levels?
	171Yb+ Atomic Levels

	Operations
	Ion (Non-Qubit) Operations
	Ion Loading Operations
	State Preparation Operations
	State Measurement Operations
	Ion Chain Operations

	Qubit Operations
	Raman Operations
	Single-Qubit Operations
	Multi-Qubit Operations

	Experiment Cycle
	Pre-Experiment
	State Preparation
	Experiment Execution
	State Measurement/Readout

	Control System Design
	Motivation
	Quantum Computers as Embedded Systems
	Challenges of Quantum Embedded Systems

	Comparing Existing Qubit Support System Requirements
	Control System Realms
	Ion Trap DAC Control
	Digital Control System
	ARTIQ Experiment Design

	RFSoC-based Coherent Control System
	Need for Flexible Waveform Control
	Waveform Generation Trade-offs
	Waveform Generation Requirements

	RFSoC System Description
	RFSoC Physical Hardware
	RFSoC Feature Breakdown
	RFSoC Frequency Feedforward
	RFSoC Pulse Control
	RFSoC Crosstalk
	RFSoC Single-channel Frequency Synchronization
	RFSoC Real-Time Pulse Feedback

	RFSoC Inputs & Outputs
	RFSoC Inputs
	RFSoC Outputs

	Conclusion

	PulseCompiler Waveform Synthesis & Specification
	PulseCompiler
	PulseCompiler Overview
	Implementation
	Uploading to A RFSoC

	RFSoC Output Modulation
	OpenPulse Waveforms
	Why OpenPulse?
	PulseCompiler vs OpenPulse Assumptions
	PulseCompiler & OpenPulse Schedules

	Converting Circuits to RFSoC Output
	What is a Qiskit Backend?
	Schedule to Channel Sequence Conversion

	Experiments with Ion Trap Control System
	Experiments Enabled by RFSoC Control System
	N-Body Gates
	N-body Gate Scheme
	Executing N-Body Gate
	N-Body Gate Results

	Advanced Ion Trap Operations
	Ion Indexing
	Center-Ion Indexing

	Ion Split-Merge Overview
	Ion Chain Sorting
	Chain Sorting Operation
	Chain Sorting Algorithm
	Comparison of Recalibration vs Sorting Time Cost

	Ion-Photon Entanglement Generator

	Outlook
	Python: Distribution and Best Practices
	Python Overview
	Python Packaging
	Python Libraries Overview
	Python Package Managers
	Python Environments
	Python Best Practices
	Recommended Development Tools
	Profiling & Optimization
	Cython: Compilation from Python to Native Code

	Git and its Usage in Physics Experiments
	Git Overview
	How does Git work?
	Git for Beginners

	Git in Physics Experiment
	Requirements for a Physics Experiment
	Suggested Git Workflow
	Nix: Deterministic, Reproducible Software
	Overview
	What is Nix?
	Cryptographic Hashes & Nix Store
	Nix Package Hierarchy
	Using Nix
	Example Nix Environment
	Full Reproducibility
	Other Recommended Nix Tools

	Nix usage in EURIQA
	Bibliography

	Index

