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A Theoretical results

In this section, we derive the bound (3) presented in the main text. We follow a two-step

approach. In Section A.1, we quantify the randomness of a pair of quantum systems character-

ized by a given Bell expectation I . In Section A.2, we apply these results to the experimental

data produced by Bell-violating devices that are used n times in succession and which, in full

generality, may not behave identically and independently at each trial.

A.1 Quantum randomness versus Bell violation

We establish here a relation between the randomness of the measurement outcomes of a quan-

tum system and its expected Bell violation. In full generality, we consider a Bell scenario

with m different measurements per system, each measurement having d possible results. The

two quantum subsystems are characterized by the joint probabilities PAB|XY = {P (ab|xy)}
to produce outcomes a, b = 1, . . . , d, when measurements x, y = 1, . . . ,m are made. A Bell

expression associated to this scenario is a linear combination I =


abxy cabxyP (ab|xy) of

the probabilities specified by the m2 × d2 coefficients {cabxy}. Probabilities that admit a lo-

cal description satisfy I ≤ I0, where I0 is the local bound of the Bell inequality. The CHSH

correlation function (1) is a particular example of such a Bell expression with m = 2 and d = 2.

We quantify the randomness of the output pairs conditioned on the input pairs by the min-

entropy H∞(AB|XY ) =− log2 maxab P (ab|xy)= minab [− log2 P (ab|xy)]. For given Bell

violation I , our aim is to obtain a lower bound on the min-entropy

H∞(AB|XY ) ≥ f(I) (A.1)

satisfied by all quantum realizations of the Bell scenario. Let P ∗(ab|xy) denote the solution to

the following optimization problem:

P ∗(ab|xy) = max P (ab|xy)
subject to


abxy cabxyP (ab|xy) = I

P (ab|xy) = tr
�
ρMa

x ⊗M b
y

 (A.2)

where the optimization is carried over all states ρ and all measurement operators Ma
x and M b

y ,

defined over Hilbert spaces of arbitrary dimension. The minimal value of the min-entropy

compatible with the Bell violation I and quantum theory is then given by H∞(AB|XY ) =

− log2 maxab P
∗(ab|xy).

To obtain a lower-bound on the min-entropy as a function of the Bell violation I which does

not depend on the input pair (x, y), it is thus sufficient to solve (A.2) for all output and input
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pairs (a, b) and (x, y). This can be done by adapting in a straightforward way the technique

introduced in [1, 2] and generalized in [3].

In [1, 2], an infinite hierarchy of conditions Ci (i = 1, 2, . . .) necessarily satisfied by all

probabilities of the form P (ab|xy) = tr
�
ρMa

x ⊗M b
y


are introduced. These conditions can

be characterized by semidefinite programs (SDP) of finite size. Conditions higher in the hi-

erarchy, that is corresponding to higher values of i, are more constraining, i.e., they better

reflect the constraints P (ab|xy) = tr
�
ρMa

x ⊗M b
y


, but they also correspond to SDP’s of

larger size. By replacing in (A.2) the conditions P (ab|xy) = tr
�
ρMa

x ⊗M b
y


by the semidef-

inite constraints Ci for i = 1, 2, . . ., one obtains a sequence of relaxations R1, R2, . . . of the

original problem that can be solved through semidefinite programming since the constraint
abxy cabxyP (ab|xy) = I and the objective function in (A.2) are both linear in the proba-

bilities P (ab|xy). The solutions of these relaxations yield a sequence of upper-bounds on

the optimum of (A.2), which in turn yields a sequence of lower bounds on the min-entropy:

f (1)(I) ≤ f (2)(I) ≤ . . . ≤ H∞(AB|XY ). The exact form of these lower bounds depend on

the Bell inequality specified by the coefficients {cabxy}, but they are all convex functions that

are equal to 0 at the classical point I = I0.

Formulating the problem as an SDP is extremely useful, as numerical methods are guaran-

teed to find the global optimum of the SDP, i.e., will yield up to numerical precision the exact

values of f (1)(I), f (2)(I), . . ..We have solved the SDPs corresponding to the second relaxation

step (i = 2) for the CHSH inequality using the matlab toolboxes SeDuMi [4] and YALMIP [5]

(see Figure 2).

Upper bounds on the min-entropy can be obtained by searching numerically for solutions

to (A.2) with fixed Hilbert space-dimension. Specifically, one can introduce a parameterization

of the state and measurement operators and vary the parameters to maximize (A.2). We find

that our upper and lower bounds coincide up to numerical precision (10−9), that is, the relation

between the min-entropy and the CHSH violation presented in Figure 2 is tight.

Using the same method, it is also possible to find a relation between the Bell violation

I and the local min-entropy, defined by H∞(A|X) = − log2 maxa,x P (a|x), where P (a|x) =
b P (ab|xy) is the marginal probability distribution of Alice’s system. Note that the local min-

entropy gives a lower bound on the global min-entropy, since H∞(AB|XY ) ≥ H∞(A|X).

In the case of the CHSH inequality, we are able to obtain the following tight analytical

lower bound (see Figure 2):

H∞(A|X) ≥ 1− log2


1 +


2− I2

4


. (A.3)

To derive the above bound we use the fact that the in the case of the CHSH inequality (two in-
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puts with binary outcomes), it is sufficient to consider measurements on a two-qubit system [6]

of the form |Ψθ = cos θ|00 + sin θ|11. For a given state |Ψθ, one can then easily compute

both P ∗
θ = maxa,x Pθ(a|x) ≤ cos 2θ, and using the Horodecki criterion [7], the maximal CHSH

violation Iθ ≤ 2
√
1 + sin2 θ. The region that is accessible to quantum theory, is then given by

the convex hull of the above set of points when we let 0 ≤ θ ≤ π/4. This corresponds to

the region characterized by the inequality P (a|x) ≤ 1
2


1 +


2− I2/4


, which implies Eq.

(A.3). The above bound is tight because it is possible to achieve simultaneously P ∗
θ = cos 2θ

and Iθ = 2
√
1 + sin2 θ with the same set of measurements on the state |Ψθ.

A.2 Randomness produced by Bell devices used n times in succession

To apply the results of the previous section to the experimental data produced by devices that

violate a Bell inequality, one has first to estimate the Bell violation. This requires to use the

devices a large number n of times in succession. In full generality, one cannot assume, however,

that the devices behave identically and independently at each use. For instance, they may have

an internal memory, so that what happens at the ith use of the devices depends on what happened

during the i − 1 previous uses. The results derived in the previous section must therefore be

combined with a statistical approach that takes into account such memory effects. We carry out

this analysis below and show how the randomness produced by the devices can be quantified

and determined experimentally without making any particular assumptions about their internal

behaviour.

We thus suppose that we have devices that violate a Bell inequality. The devices are used

n times in succession. We denote by xi, yi ∈ {1, . . . ,m} the measurement inputs and by

ai, bi ∈ {1, . . . , d} the measurements outputs at round i. We denote by ak = (a1, a2, . . . , ak)

the string of the first k outputs ai, and we define similarly bk, xk, and yk. We suppose that the

input pairs (xi, yi) at round i are independent and identical random variables with distribution

P (xi = x, yi = y) = P (x, y). Note that in general P (x, y) may not be a product distribution

P (x, y) = P (x)P (y).

Let PR|S = {P (anbn|xnyn)} be the probability distribution of the final output string r =

(an, bn) given the fact that the sequence of inputs s = (xn, yn) has been inserted in the de-

vices. Similarly to the single-copy case, the randomness of the output string conditioned on

the inputs can be characterized by the min-entropy H∞(R|S) =− log2 maxr P (r|s)= minanbn

(− log2 P (anbn|xnyn)). We derive here a lower bound on − log2 P (anbn|xnyn) valid for all

(anbn) and (xn, yn). This implies a lower bound onH∞(R|S), asH∞(R|S) ≥ − log2 P (anbn|xnyn).
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We start with the identities

− log2 P (anbn|xnyn) = − log2

n
i=1

P (aibi|ai−1bi−1xiyi)

= − log2

n
i=1

P (aibi|xiyiW
i) (A.4)

=
n

i=1

− log2 P (aibi|xiyiW
i)

The first equality follows from Bayes rule together with the fact that the response of the system

at round i does not depend on future inputs (xj, yj) with j > i. In the second equality, we

introduced the variable W i = (ai−1bi−1xi−1yi−1) to denote all events in the past of round i.

The behaviour of the devices at round i conditioned on the past is characterized by a response

function P (aibi|xiyiW
i) and a Bell violation I(W i). Whatever be the precise form of the

quantum state and measurements implementing this behaviour, they are bound to satisfy the

constraint − log2 P (aibi|xiyiW
i) ≥ f(I(W i)), as required by (A.1). Inserting this relation into

Eq. (A.4), we obtain

− log2 P (anbn|xnyn) ≥
n

i=1

f
�
I(W i)



≥ nf


1

n

n
i=1

I(W i)


(A.5)

where we used the convexity of the function f to deduce the second inequality. We now show

that the quantity 1
n

n
i=1 I(W

i) can be estimated with precision using only the information

coming from the input and output strings observed in the experiment.

Let χ(e) be the indicator function for the event e, i.e. χ(e) = 1 if the event e is observed,

χ(e) = 0 otherwise. Consider the random variable

Îi =

abxy

cabxy
χ(ai = a, bi = b, xi = x, yi = y)

P (x, y)
, (A.6)

which is chosen so that its expectation conditioned on the past W i is equal to E(Îi|W i) =

I(W i). We define Î = 1
n

n
i=1 Îi as our estimator of the Bell violation. In the case of the

CHSH inequality, it is readily verified that (A.6) correspond to the expression (2) given in the

main text. Let q = minxy{P (x, y)} and let us assume that q > 0 (that is, we assume that each

possible pair of inputs (x, y) has a non-zero probability to be chosen). Let us introduce the

random variables Zk =
k

i=1 (Ii − I(W i)). It can be verified that (i) E(|Zk|) < ∞, and that

(ii) E(Zk|W 1, . . . ,W j) = E(Zk|W j) = Zj for j ≤ k. Thus the sequence {Zk : k ≥ 1} is a
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martingale1 [10] with respect to the sequence {W k : k ≥ 2}.

The range of the martingales increment are bounded by |Ii − I(W i)| ≤ 1
q
+ Iq, where

Iq is the highest possible violation of the inequality I allowed by quantum theory. We can

therefore apply the Azuma-Hoeffding inequality [10–13] P (Zn ≥ ) ≤ exp

− 2

2n(1/q+Iq)2


,

which implies that (with  = n)

P


1

n

n
i=1

I(W i) ≤ 1

n

n
i=1

Ii − 


≤ δ, (A.7)

where

δ = exp


− n2

2(1/q + Iq)2


. (A.8)

Thus the sum of the Bell expressions 1
n

n
i=1 I(W

i) can be lower than the observed value

Î = 1
n

n
i=1 Ii up to some  only with some small probability δ. Combining this last result with

Eq. (A.5), we conclude that

H∞(R|S) ≥ − log2 P (anbn|xnyn) ≥ nf

Î − 


(A.9)

with probability at least 1− δ.

A.3 Bounds using no-signalling only

As mentioned in the main text, it is also possible to prove lower bounds on the min-entropy

of the form Eq. (A.1), but where we impose rather than the full quantum formalism only the

no-signalling conditions. That is, we impose that the measurement outcomes produced by the

devices cannot be used for arbitrary fast communication, even at a hidden level. We are thus led

to a new optimisation problem, which replaces the optimisation problem Eq. (A.2) we studied

1A martingale is a stochastic process (i.e., a sequence of random variables) such that the conditional expected

value of an observation at some time k, given all the observations up to some earlier time j, is equal to the

observation at that earlier time j. This causality constraint — expressed formally by condition (ii) above —

is very strong, and it implies that in some respects martingales behave like sums of independent variables. In

particular, if the martingale increments (from time k to the time k + 1) are bounded, they obey a large deviation

theorem, the Azuma-Hoeffding inequality, which we use to derive Eq. (A.7). Martingales were introduced in

quantum information in the context of Bell tests in order to show that having an internal memory of past events is

only of marginal help to local models [8, 9]. Here we use the theory of martingales in the context of randomness

generation to show that the same device can be used n times in succession without significantly changing the rate

of randomness generation with respect to the mathematically simpler but impractical case where n independent

devices are used in parallel.
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previously:
P ∗(ab|xy) = max P (ab|xy)

subject to


abxy cabxyP (ab|xy) = I

P (ab|xy) ≥ 0,
ab P (ab|xy) = 1,

a P (ab|xy) = P (a|x),
b P (ab|xy) = P (b|y),

(A.10)

where the last two equalities are the no-signalling conditions. Solving (A.10) (which can be

done using linear programming), one deduces a bound of the form P ∗(ab|xy) ≤ αI + β,

where in full generality α and β may depend on a, b, x, y. This follows from the fact that the

constraints in eq. (A.10) define a polytope.

In analogy to Eq. (A.3), one could also consider the maximum of P (a|x) subject to the

conditions enumerated in Eq. (A.10), which we denote P ∗(a|x). In this case also the maximum

is bounded by a finite set of linear inequalities.

In the case of the CHSH expression, the relevant inequalities are:

P ∗(a|x) = P ∗(ab|xy) ≤ 3

2
− I

4
(A.11)

This follows easily by recalling that the extremal points of the no-signalling polytope when

a, b, x, y ∈ {0, 1} fall into two classes, the deterministic points for which P (ab|xy) ≤ 1 and

I = ±2, and the Popescu-Rohrlich boxes for which P (ab|xy) ≤ 1/2 and I = ±4. This in turn

immediately implies a bound of the form eq. (A.3):

H∞(AB|XY ) ≥ − log2


3

2
− I

4


. (A.12)

Using this bound, one can now apply directly all the results presented in section A.2 to ob-

tain a bound on the min-entropy when the devices are used n times in succession. The only

modification is that in Eq. (A.8), the maximal possible violation Iq of the Bell inequality al-

lowed by quantum theory, must be replaced by the maximal possible violation Ins allowed by

no-signalling.

B Quantum randomness expanders

We now discuss how the results that we have just derived can be used in the context of ran-

domness expansion. Relations between randomness and Bell inequality violations have been

discussed in different contexts in several works, see for instance [14–16]. In his PhD the-

sis [17], Colbeck proposed to exploit this connection for the task of private randomness gener-

ation and formalized this idea concretely. Moreover, he introduced a protocol for randomness
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expansion based on Greenberger-Horne-Zeilinger (GHZ) multipartite pure-state correlations.

Following [17], we define quantum private randomness expansion (QPRE) as a single-party

task where a user, Alice, expands a small random initial seed2 into a larger string which is

close to uniformly random, even when conditioned on the information of a potential quantum

adversary. In detail QPRE is realised as follows:

1. The setting: Alice has a pair of devices, each of which has m inputs and can produce

d outputs. We assume that Alice starts the protocol with an initial private random seed

t = (t1, t2) divided in two strings t1 and t2. At the beginning of the protocol, Alice also

chooses a security parameter δ that bounds the probability with which an adversary can

cheat.

2. Use of the devices: Alice uses the string t1 to generate pairs of inputs s = (x1, y1; . . . ; xn, yn).

Every pair is generated independently with a probability distribution P (x, y). Alice then

introduces the inputs (xi, yi) in her devices and obtains the outputs (ai, bi); she repeat

this last step n times for i = 1, . . . , n.

3. Evaluation of the min-entropy: from the final input and output strings s = (x1, y1; . . . ; xn, yn)

and r = (a1, b1; . . . an, bn) Alice computes Î (see (A.6)), and from the chosen value for

the security parameter δ, Alice computes  (see (A.8)). From these values Alice then

computes the bound (A.9) on the min-entropy H∞(R|SE) of the raw output string r.

4. Randomness extraction: Alice uses a randomness extractor3 and the string t2 to convert

the raw string r into a slightly smaller string r̄ of size O(nf(Î − )) which is close to

uniform and uncorrelated to the adversary’s information.

The final random string (t, r̄) of Alice is clearly longer than the initial string t provided

that the bound on the entropy H∞(R|SE) is strictly positive. However, when the number n

of uses of the devices is sufficiently large, it is possible to start from an initial seed of length

O(
√
n log2

√
n) to produce a much longer final string of length O (n). Indeed, if Alice selects

one of the d2 possible input pairs (x, y) with probability 1− (d2− 1)q and the remaining d2− 1

2Any device-independent random number generation protocol must necessarily use an initial random seed.

Indeed, if Alice follows a deterministic procedure, then there exists a predetermined set of measurement outcomes

that will pass all the tests performed by Alice, and the adversary can simply provide devices that generate these

classical outputs. Thus the fact that we need an initial random seed is not a weakness of our scheme but a necessity

inherent to the concept of device-independent RNG itself.
3Randomness extractors are classical functions that take as input a small uniform random string t2 and a much

longer string whose min-entropy is lower bounded by H∞, and produce as output a string of length H∞ which is

nearly uniform.
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ones with probability q, with q small, the randomness required to generate the inputs is then

equal to nO(−q log2 q). Taking q = O(1/
√
n), the initial random seed t1 must thus be of

length O(
√
n log2

√
n). The randomness of the raw string r, on the other hand, is given by

(A.9) where  is of order O(1). For fixed Bell violation Î , the output entropy is thus linear

in n. The raw string r can then be transformed into the fully secure random string r̄ using a

randomness extractor with the help of a small random seed t2, say of length O(poly log n) [18].

This shows that it is possible to construct device-independent QPRE producing O (n) random

bits from an initial seed of total length O(
√
n log2

√
n).

The security of this protocol only holds for the moment against quantum adversaries that

measure their quantum side-information before the randomness extraction step. That our anal-

ysis holds in this situation follows from the fact that when the adversary performs a measure-

ment on his system, the outcome that he obtains amounts to the preparation of Alice’s devices

in some particular state. But the bound (A.9) is independent of the way in which the devices

have been prepared and thus also holds when conditioned on the outcome of the adversary’s

measurement.

Our protocol is thus not yet proven to be universally-composable against a full quantum

adversary, that is, secure against an adversary that stores his side-information in a quantum

memory which can be measured at a later stage. A universally-composable proof would cover

the situation in which the adversary tries to estimate the random numbers after getting partial

information about them. To obtain a full universally-composable proof of security of our QPRE

protocol, a bound on the entropy of the raw string conditioned on the quantum information of

an adversary must be derived. Such a bound could then be used in a randomness extraction

procedure secure against a fully quantum adversary [19].

Proving universally-composable security of our protocol might also open the possibility of

more elaborated protocols where Bell violating devices are used in a concatenated way: the

random string produced by a first device is used as seed for a second device, whose input

is in turn used as seed for the first and so on. Such more complex solutions could lead to

much more efficient QPRE devices. Related to this efficiency question, we note that the results

of [20] and [21] imply that exponential randomness expansion, i.e., the generation of an output

random string of size O(n) starting from a seed of size O(poly log n), is possible in the situation

where the devices have no classical or quantum memory. Note, however, that the fact that our

bound (3) holds for devices that have an internal memory is the crucial feature that makes our

protocol practical. It would be interesting to show that exponential randomness expansion is

also possible in this situation.
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Finally, we mention that although we focused here our theoretical analysis on a bipartite

protocol (which is easier to implement in practice), our theoretical approach can also probably

be generalized to compute a bound on the randomness produced by the randomness expansion

protocol based on GHZ multipartite correlations introduced in [17].

C Requirements on the devices

In this section, we discuss the requirements that are necessary to generate random numbers

certified by a Bell inequality violation and clarify the concept of device-independence. We also

discuss these requirements in the context of the security of the QPRE task and in the context of

our experimental demonstration.

We recall that the QPRE system is composed of two devices, referred to in the follows as

device A and device B. The derivation of the min-entropy bound (3) rests on the following

assumptions.

1. Quantum-theory: The two devices behave according to quantum theory.

That is when an input x (y) is introduced in a device, an output a (b) is produced accord-

ing to some quantum process.

2. Input randomness: The inputs xi, yi at round i are generated by random processes that

are independent and uncorrelated from the devices and their values is revealed to the

devices only at round i.

This guarantees that the behaviour of the devices at round i does not depend on the values

of the inputs used in later rounds, i.e., that the following condition is satisfied

P (aibi|xiyi . . . xnynW
i) = P (aibi|xiyiW

i) , (C.1)

where W i denotes, as in Section A.2, all events in the past of round i. This condition is

used in the first line of Eq. (A.4).

3. Locality: From the moment that the inputs are introduced until the outputs are produced,

the two devices are separated and no signal (quantum or classical) can travel from one

device to the other. Moreover, the input x is introduced only in device A and the input y

only in device B.

This assumption ensures that the Hilbert space describing the two devices factorizes as

a tensor product and that the measurement operators act on each factor in a way that de-

pends only on the corresponding local input. That is, that the probabilities characterizing

10
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a single-run of the experiment are of the form

P (ab|xy) = tr
�
ρMa

x ⊗M b
y


. (C.2)

This mathematical condition is used in the optimization problem (A.2) in Section A.1.

When the above three conditions are satisfied, the min-entropy bound (3) derived in Section A

follows without additional assumptions on the quantum states, the measurements, the dimen-

sion of the Hilbert space, or any other aspects concerning the internal working of the quantum

devices. This is what we refer to as device-independence — the fact that the min-entropy bound

or the security proof does not depend on a model of the devices.

The conditions listed above represent minimal requirements to apply the device-independence

proof in practice: if one of them is not satisfied then it is no longer possible to guarantee the

presence of randomness through the violation of a Bell inequality 4. Whether these conditions

are verified in an implementation is therefore an important question. However, it is not a ques-

tion that has a unique and well-defined answer. Depending on the application, the adversarial

scenario under consideration, and our level of “trust” in the devices, there may be different

ways to enforce these conditions or verify that they are satisfied. As an illustration, we discuss

below three possible ways to ensure that condition 3 is satisfied: i) by imposing space-like

separation between the measurement devices; ii) by shielding the devices; iii) by proper design

of the setup.

i) Strict space-like separation. Condition 3 states that the devices should be separated and

non-interacting during the measurement process. Obviously strict space-like separation be-

tween the devices could be used to enforce this separability condition. This space-like separa-

tion is required to close the locality loophole in standard Bell tests, where the objective is to

disprove alternative theoretical models of Nature that can overcome the laws of physics as they

are currently known. Here, however, we assume from the beginning the validity of quantum

theory and we use Bell inequalities not as a test of hidden variable models but as a tool to

quantify the randomness of quantum theory. Once we assume quantum theory, they are many

ways to ensure that the two systems are not interacting other than placing them in space-like

intervals, e.g. by shielding the devices as discussed below in point ii).

4Note that although these three conditions are necessary and that we cannot go completely without them, they

can probably be weakened at the expense of the randomness generation rate. This is clear for the first assumption,

as we have seen in Section A.3 that the validity of quantum theory can be replaced by the no-signalling principle.

But it might also be possible to weaken the two other assumptions and show that Bell-violating devices can

generate randomness even if they have a limited amount of prior information about the future inputs or if they can

exchange some limited communication.
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The view that there is no satisfying way to prevent information from being exchanged

between two systems except by strict space-like separation is very conservative. The main

problem with this level of paranoia is that it makes cryptography impossible. Indeed, a basic

assumption behind all cryptography (classical or quantum) is that users must be confident that

information cannot leak out of their location, devices, computers, etc. If the only constraints on

the flow of information are those which follows from special relativity, cryptography becomes

impossible: any secret bit or key inevitably leaks out to the adversary at the speed of light as

soon as produced.

The space-like separation approach may be relevant for non-cryptographic applications of

random numbers, where privacy is not an issue, such as Monte Carlo algorithms. Its main

advantage is that the condition (C.2) follows immediately. A secondary point to take into

account in this approach, however, is that the inputs x and y must be generated locally and

immediately before being introduced into the devices, so that they are prevented from knowing

the other device’s input5.

Note that space-like separation is essential to test more fundamental implications of our

results, such as the compatibility between determinism and no-signalling mentioned at the end

of the paper.

ii) Shielding of the devices. Here, condition 3 is enforced by separating and shielding the

devices and the relevant part of the laboratory. This view is consistent with the known forces

in physics which are either extremely weak (gravity), short range (weak and strong force), or

can be screened by conductors (electro-magnetic force). Note that the shields must have doors

with allow the boxes to interact with the external world (dotted lines in Figure 1). The doors

must allow both classical and quantum information through, to let the devices establish shared

entanglement, receive the inputs x, y, and produce the outputs a, b.

The assumption that laboratories and devices can be adequately shielded against unwanted

leakage of information is implicit in all of cryptography. From the basic cryptographic require-

ment that the two devices can be adequately shielded so that they do not send information to

the adversary, it is only a small extra step to require that they can also be adequately shielded

so that they cannot signal to each other. It would be very artificial to assume that the devices

5This implies that the inputs must be generated with a product probability distribution P (x, y) = P (x)P (y).

In particular, the joint input distribution cannot be of the form P (00) = 1 − 3q, P (01) = P (10) = P (11) = q

which leads to the quadratic catalysis effect discussed in the previous Section and illustrated in Figure 3. A weaker

catalysis effect is nonetheless possible if each individual input is chosen with probabilities P (0) = 1− q, P (1) =

q, resulting in the joint probability P (00) = (1 − q)2, P (01) = P (10) = q(1 − q), P (11) = q2. Taking

q2 = O(n1/4), we find that  in Eq. (A.9) is of order O(1), and thus that the output randomness is of order O(n).

The randomness consumed at the inputs, on the other hand, is nO(−q log2 q) = O(n3/4 log2 n
1/4).
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are not able to communicate to the adversary, an essential requirement for any cryptographic

application, but can communicate between each other.

The main disadvantage of this approach is that we are making a technological assumption.

One can never completely rule out that the shielding is sufficient. Particular attention would

have to be paid to this point if it is an adversary that has provided the devices.

iii) Proper design of the experiment. We may have a good confidence that condition 3 is

satisfied simply based on a proper design and superficial description of the devices. For instance

in the experiment reported here we are using two atoms that are confined in two independent

vacuum chambers separated by about 1 meter. At this distance, direct interaction between the

atoms is negligible and classical microwave and optical fields used to perform measurements

on one atom have no influence on the other atom. Based on this superficial description of the

setup, we can safely assume that we are dealing with two independent quantum systems and

that the general formalism used to derive our bound applies6.

Obviously, this approach is insecure in the adversarial scenario where the devices are un-

trusted and assumed to be prepared by an adversary, in which case it is necessary to take active

measures to control the flow of information in and out of the devices, as in point ii) above.

The application of the concept of device-independence, however, is not restricted to this strong

adversarial scenario with untrusted devices. It may be perfectly legitimate to assume that the

devices have been built in good faith and that they do not contain any sneaky component send-

ing unwanted signals (we must anyway trust the classical computers, devices, etc., used to

analyze the data). The problem, however, is that it is very difficult, even for honest parties, to

construct reliable random number generators. The theoretical modeling of the physical process

at the origin of the randomness source is often incomplete and relies on assumptions which

may be very difficult to confirm. This makes an accurate estimation of the entropy produced by

the devices difficult. Most RNGs break silently, often producing decreasingly random numbers

as they degrade. Failure modes in such devices are plentiful and are complicated, slow, and

hard to detect. Imperfections can introduce patterns undetected by statistical tests but known

to an adversary. The generation of randomness in a device-independent way (that is without

detailed modeling of the devices) solves all these shortcomings of traditional random number

generators: the violation of a Bell inequality provides a bound on the randomness produced by

6At first sight a better way to implement our proposal experimentally would be to use two ions in the same

trap, as in [22], as data rates orders of magnitude higher can be achieved. But in this case we cannot assume that

the two ions are separate and non interacting without modeling the details of the experiment. Indeed the ions are at

all times strongly coupled through the vibrational modes of the cavity, and furthermore the measurements cannot

be assumed to act on each ion separately as they are separated by a few microns, comparable to the wavelength of

light used for readout.
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the devices, independently of any noise, imperfections, lack of knowledge, or limited control

of the apparatuses.

Considerations similar to the above ones can be made for the second condition in our list

of assumptions, i.e., the requirement that the inputs should be chosen in a way that appears

“random” to the devices. In our experiment, the value of the chosen measurement bases (xi, yi),

obtained by combining the outputs of several (public) random number generators, is unlikely

to be correlated to the state of the atoms before the measurement microwave pulses are applied,

and we can safely assume that Eq. (C.1) is satisfied. Of course in a strong adversarial scenario

where the devices are untrusted, the adversary could exploit a prior knowledge of the inputs in

the design of the devices. In this case, it is thus important to generate the inputs with a private

random source.

Finally, it is tacit, but obvious, that the implementation should conform to the theoretical

description detailed in Section B. For instance, in the case of the CHSH inequality, we consider

devices that produce binary outcomes a, b ∈ {0, 1} and use all the raw data produced over the

n runs of the experiment in our analysis. In photonic Bell tests, detectors have low efficiencies,

and device often produce a no-event outcome ⊥ corresponding to the absence of a click, i.e.,

a, b ∈ {0, 1,⊥}. This leads to the famous detection loophole which is circumvented by apply-

ing a post-selection to the observed data. This represents a departure from our description and

our results can therefore no longer be applied in this case. In our experiment, this problem is

not an issue, as every event is recorded.

More generally, it is straightforward that a Bell violation without closing the detection

loophole (or other loopholes arising from post selection, such as the coincidence time loophole

[23]) cannot be used to certify randomness generation. In a scenario where the devices are

trusted, one could address this requirement by means of the fair sampling assumption, which

states that the detected events represent a fair sample of all the events (including the undetected

ones). However, making the fair sampling assumption requires a detailed knowledge of the

devices, and could fail without one being aware of it (see also attacks based on the detection

loophole in traditional QKD [24, 25].).

D Experiment

D.1 Experimental system

Individual 171Yb+ atomic ions are stored in two rf Paul traps located in two independent vacuum

chambers separated by about 1 meter and placed in the magnetic field of 3.4 G that defines the

quantization axis. We encode qubits in the F = 1, mF = 0 and F = 0, mF = 0 hyperfine levels
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of the S1/2 ground state of each atom, denoted by |1 and |0, respectively. Each experimental

sequence begins with a 1 µs optical pumping pulse and 10 µs microwave pulse that prepares

each atom in the |0+|1 state. Next, a fast laser pulse linearly polarized along the direction

of magnetic field excites both ions to the P1/2 state with a probability close to unity. If the

atoms each return to the ground state by emission of a π-polarized photon, the frequency of

the emitted photons are entangled with the atomic qubit states. With a small probability, both

photons are collected from each atom and interfered on a 50:50 beamsplitter, with polarizing

filters selecting only π-polarized light. Detection of coincident photons behind the beamsplitter

heralds the preparation of the entangled state of the two atoms: |0| 1 − eiχ| 1 | 0 [26, 27].

The experiment is repeated at 95 kHz, but due to finite collection and detection efficiency

of the photons, we observe on average only 1 entanglement event every 8 minutes. Given a

successful entanglement event, we finally detect each qubit in measurement bases determined

by the input variables x and y [28]. Before measurement, microwave pulses with a controlled

phase and duration resonant with the |0 → |1 transition rotate each atomic qubit through a

polar angle of π/2 on the Bloch sphere. The phase difference ϕx−ϕy between the rotations on

the two atoms is adjusted with respect to the phase χ of the entangled state so that the qubits are

appropriately rotated for a Bell inequality violation [29]. Finally, each atom is illuminated with

laser light resonant with the S1/2 F = 1 → P1/2 F = 0 transition, and the |1 state fluoresces

strongly while the |0 state is nearly dark, resulting in a detection of each qubit state with 98.5%

accuracy [28].

D.2 Generation of measurement settings

The measurement settings were chosen by combining several online random number generators

that use: radioactive decay as a source of randomness [30]; atmospheric noise as a source of

randomness [31]; and randomness derived from remote computer and network activity [32].

We requested 128 bytes (corresponding to 32 integer numbers) from each of these generators

and combined them using XOR function. This procedure should produce measurement settings

that are independent and uniform. Indeed the measurement settings were tested to ascertain that

they did not contain any obvious bias (see Appendix D.4).

Before every entanglement event the two least significant bits of one of the above integer

numbers was transmitted to the FPGA board that controls our experimental time sequence.

After a two photon coincidence event the board applies microwave pulses to both ions with

a phase that depends on the measurement setting it obtains from the computer, counts the

number of photons during ions state detection, transmits the state detection results and the

measurement settings it used back to the computer, and receives new measurement settings
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for the next entanglement event. When the number of available random numbers in the buffer

approaches 0, a new block of random numbers is requested from the random number generators

and added to the buffer.

D.3 Comparison with local causality

The usual interpretation of the experimental violation of a Bell inequality is that the observed

correlations cannot be reproduced by a local model [33]. This should be properly expressed as

a statistical statement. Here we follow the approach of [8, 9] (see also Section A.2) to derive

the relevant statement.

We consider the quantity Ii defined in Eq. (A.6), and focus on the CHSH inequality with

uniform choice of settings (P (xy) = 1/4). We denote by the superscript l the predictions of

local theories.

Let us consider the predictions of local theories. In this case we have −2 ≤ E(I li (W
i) =

I l (W i)) ≤ 2. The random variables Zk =
k

i=1


Îi − I l (W i)


are a martingale with respect

to the sequence {W k : k ≥ 2}. The range of the martingales increments are bounded byÎi − I l (W i)
 ≤ 4 + 2 = 6, where the 4 comes from the possible range of Îi and the 2 comes

from the range of I l (W i). Applying the Azuma-Hoeffding inequality then implies that the

probability that a local deterministic theory will yield a violation greater or equal than the

observed violation Î = 1
n

n
i=1 Ii is bounded by:

P (
1

n

n
i=1

I l(W i) ≥ Î) ≤ exp


−

n

Î − 2

2

72


 . (D.1)

This inequality holds for all local models (even if they can exploit an internal memory that

remembers past measurement settings and past outputs) which attempt to violate the CHSH

inequality (with the measurement settings uniformly distributed). Inserting the data from our

experiment (Table 1) shows that the probability that the measurement results could have been

produced by a local model is less than 0.000767.

D.4 Statistical tests

As a check of consistency and of the quality of our experiment, we verified that the bit strings

(x1, y1; . . . ; xn, yn) used as measurement settings and the bit strings a1, b1; . . . ; an, bn produced

as outputs did not reveal any obvious non-random pattern using a standard battery of statistical

tests [34–36]. However, those batteries were originally designed for sequences containing mil-

lions of bits. As the strings we consider contain several thousands of bits, only the tests statisti-

16



17www.nature.com/nature

SUPPLEMENTARY INFORMATIONdoi: 10.1038/nature09008

cally relevant for such small strings were performed. Specifically the tests called “Frequency”,

“Block frequency”, “Runs”, “DFT”, “Serial” and “Approximate Entropy” were reprogrammed

from [35] (sections 2.1, 2.2, 2.3, 2.6, 2.11, 2.12 ) and the tests called “Two-bit” and “Poker”

were reprogrammed from [36] (section 5.4.4.).

The result of these statistical tests are described by a p-value, which is the probability that

a perfect random number generator would have produced a sequence less random than the

sequence that was tested, given the kind of non-randomness assessed by the test. A p-value

of 1 therefore means that the sequence tested appears to have been generated by a perfectly

random process, while a p-value of 0 implies that the sequence appear to be completely non-

random [35]. Together with computing the p-value, a significance level α should be chosen for

the tests. If the p-value ≥ α, then the hypothesis that the sequence appears to be random is

accepted. If the p-value < α, then this hypothesis is rejected, i.e., the sequence appears to be

non-random. Typical values for α are in the range [0.0001, 0.01] and we choose α =0.001. An

α of 0.001 indicates that one would expect one sequence in 1000 sequences to be rejected by

the test if the sequence was generated by a perfect random number generator. For a p-value ≥
0.001, a sequence would be considered to be random with a confidence of 99.9%. For a p-value

< 0.001, a sequence would be considered to be non-random with a confidence of 99.9% [35].

The results of these statistical tests (given by the p-value) evaluated on our data are given

in Table 2. As in Section A.2, we use the notation xn = (x1, ..., xn), an = (a1, ..., an) for the

settings and outputs for the first ion; and yn = (y1, ..., yn), bn = (b1, ..., bn) for the settings and

outputs for the second ion. Each of these strings contains n = 3016 bits and the combination

(a1, b1, ..., an, bn) contains therefore 6032 bits.

As we see from the data in Table 2, the input string xnyn passes all the tests since the

p-values are larger than the chosen significance level α =0.001. This is expected as the ran-

dom number generators we used have already been extensively tested. The outputs strings an

and bn taken separately also pass all the tests. This confirms that the experiment performed

well and did not have any important internal bias. Finally, as expected, if all the outputs are

grouped into the combination (a1, b1, ..., an, bn), then the results do not pass the tests because

the measurement outputs on the two atoms are correlated and thus are not independent random

variables.

Note that the general theory described in this paper guarantee that the measurement outputs

contain at the 99% confidence level 42 new random bits, independently of any hypothesis on

how the experiment was realised. This is a much stronger statement than passing or not pass-

ing the statistical tests mentioned above, which merely indicate that no obvious non-random

patterns are present in the measurement outputs.
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Statistical test xnyn an bn (a1, b1, ..., an, bn)

Frequency 0.9795 0.7988 0.0743 0.1493

Block Frequency 0.2668 0.5540 0.0592 0.1360

Runs 0.6616 0.2904 0.4312 0.0000

DFT 0.8542 0.3096 0.8686 0.3081

Serial 0.1681 0.1300 0.0119 0.0000

Approximate Entropy 0.2445 0.5568 0.0130 0.0000

Two Bit 0.9024 0.5699 0.1579 0.0000

Poker 0.0189 0.1933 0.0353 0.0000

Table 2: Results of the statistical tests given by the p-values evaluated on the measurement

settings, the outputs of one atom and the other taken separately, and the outputs of the two

atoms taken together.

To verify that the atoms did not influence each other during the measurement in an obvious

way, we also performed statistical tests to check that the data reported in Table 1 in the main

text are compatible with the no-signalling conditions given in Eq. (A.10). There are 4 no-

signalling conditions to check. In each case we performed a two-sided Fisher’s test. We found

p-values of 0.7610; 0.7933; 0.7933; 0.2867 which show that the data are compatible with the

no-signalling hypothesis.
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