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Abstract
There are several known schemes for entangling trapped ion quantum bits
for large-scale quantum computation. Most are based on an interaction
between the ions and external optical fields, coupling internal qubit states of
trapped ions to their Coulomb-coupled motion. In this paper, we examine
the sensitivity of these motional gate schemes to phase fluctuations
introduced through noisy external control fields, and suggest techniques for
suppressing the resulting phase decoherence.
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(Some figures in this article are in colour only in the electronic version)

Scalable quantum computing presents a direct application for
the study and control of large-scale quantum systems. The
generally accepted requirements for quantum hardware [1]
include identifiable two-level systems for storing information
in the form of quantum bits (or qubits), and methods
for externally manipulating and entangling qubits through
quantum logic gate operations. The implicit interconnects
represented by entangled quantum systems provide the
power behind quantum computation, giving rise to certain
applications such as Shor’s factoring algorithm [2] and
Grover’s search algorithm [3] that exceed the capabilities
of classical computers. However, in engineering complex
entangled states of many qubits, it is critical to control
the phase of the system of qubits and the phase of the
classical control parameters that guide the quantum gates.
Techniques of quantum error correction [4, 5] appear essential
for stabilizing quantum computations, but to reach fault-
tolerant error-correction thresholds [6], the host system must
already possess a great deal of passive stability and must be
relatively insensitive to external noise.

One of the most promising quantum computing
architectures is a system of cold atomic ions confined in
free space with electromagnetic fields [7, 8, 10]. Here,
qubits are stored in stable electronic states of each ion,
and quantum information can be processed and transferred
through the collective quantized motion of the Coulomb-
coupled ion crystal. Applied electromagnetic fields (usually
from a laser) enable this coupling between internal qubit states

and external motional states, following several known quantum
gate schemes [7, 11–13]. Trapped ion quantum gates are thus
highly susceptible to noise on the applied laser fields in addition
to ambient electric and magnetic fields. In most cases, the
relevant phases of the laser fields for quantum gates can be
sufficiently stable during the evolution of a given gate, with
gate speeds typically faster than about 100 µs. However, for
extended operations involving many successive gates, it will
be difficult to maintain optical phase stability over the duration
of the quantum computation.

From an engineering standpoint, the ability to perform
gate operations on any individual qubit or set of qubits with a
given phase at any step in a series of operations is requisite to a
universal quantum computer. We assume that all operations are
synchronized to a local oscillator in perfect resonance with the
qubits. Each qubit initially has an arbitrarily defined phase,
and subsequent phase accumulations from interactions must
be tracked so that each operation accounts for the phase of the
individual qubit. These interactions are primarily AC Stark
shifts from the optical control fields [14] and Zeeman shifts
from ambient magnetic fields. Our goal here is to prescribe
a set of gates that leave the qubits independent of the optical
phase of the driving field after each operation is complete,
while enjoying passive isolation from Stark and Zeeman qubit
phase shifts.

In this paper, we consider several quantum gate schemes
in the trapped ion system, concentrating on a class of
currently favoured quantum gates that rely on a ‘spin-
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dependent force’ [15, 11, 16, 12, 17, 13, 19], and are relatively
insensitive to motional heating from noisy background
electric fields [20, 21]. We will discuss the sources of
phase decoherence for these gates and describe methods
for suppressing decoherence from slow phase drifts of the
driving optical fields. We find that certain gate schemes can
be simultaneously insensitive to background magnetic fields,
making them quite robust for long-term computations.

This paper is divided into three sections. Section 1 lays
out the background for the various quantum gate schemes for
the trapped ion system, covering detailed steps for performing
single-qubit operations and a discussion of the original Cirac–
Zoller model with special attention paid to the phases of the
qubits [7]. Section 2 describes entangling gates using a spin-
dependent force. We show how special arrangements of the
classical driving fields can suppress slow phase decoherence
from laser noise and external magnetic field noise [19].
Section 3 shows how to similarly suppress long-term phase
noise in a recent ‘fast’ gate scheme that relies on impulsive
spin-dependent optical forces [13].

1. Background

Typical atomic ion species for quantum information
applications such as 9Be+, 43Ca+, and 111Cd+ have a single
valence electron with a 2S1/2 ground state and 2PJ first excited
electronic state. In isotopes with non-zero nuclear spin, the
2S1/2 ground states are split by the hyperfine interaction. An
applied static magnetic field B0 provides a quantization axis
and removes degeneracy in the ground state Zeeman levels.
Two states, one from each ground state hyperfine level, are
designated as the qubit states, denoted by ↑i and ↓i for
each ion i and separated by energy E↑ − E↓ = h̄ω0. At
certain values of B0, this energy splitting can be insensitive to
magnetic field fluctuations to first order, forming a qubit that
can have particularly good phase stability. Such qubit levels
are termed ‘clock states’ because their stability is exploited
in atomic clocks [22]. The qubit frequency splitting ω0 is
usually in the microwave range and large compared with the
radiative linewidth γ of excited electronic states; therefore the
qubit can be measured with high fidelity by resonant pumping
to a cycling transition between one hyperfine state and an
excited electronic state [8]. Initialization of the qubits can also
be accomplished with high accuracy using optical pumping
techniques (figure 1).

We assume that ions are confined in a linear Paul trap [23]
with a combination of static and radio frequency (rf) electric
quadrupole potentials [24]. When the ions are sufficiently cold,
their Coulomb repulsion balances the external confinement
forces, and the ions form stationary crystals with the residual
motion described by coupled harmonic oscillatory motion in
the trap. The number of collective modes scales linearly with
the number of atoms N in the trap, making it difficult to
isolate and control all modes of oscillation for large numbers
of ions. To circumvent this difficulty, an architecture has been
proposed for shuttling ions between multiple trap regions in a
trap structure such that it is only necessary to localize a small
number of ions at a given time [10]. Qubit quantum gates
in addition to arbitrary single-qubit rotations are sufficient for
the engineering of arbitrarily complex entangled states [1], so

Figure 1. 111Cd+ as an example of a hyperfine qubit. The 2S1/2

ground state electron configuration combined with the nuclear spin
I = 1/2 creates an energy splitting of 14.5 GHz due to the hyperfine
interaction. The states |F = 0, mF = 0〉 and |F = 1, mF = 0〉 are
called ‘clock’ states at zero magnetic field since their energy
difference has no first-order dependence on the magnetic field, and
are designated as the qubit states |↑〉 and |↓〉 respectively. A small
external magnetic field lifts the degeneracy of the F = 1 states
through the Zeeman effect. Due to the large ground state hyperfine
splitting, the qubit can be initialized by optically pumping into the
|↑〉 = |F = 0, mF = 0〉 state. The qubit state can be measured by
applying resonant σ+ radiation to optically pump the
|↓〉 = |F = 1, mF = 0〉 state to the |F = 1, mF = 1〉 state and drive
a cycling transition between the 2S1/2, F = 1 and the 2P3/2, F = 2
excited states and collecting the resulting fluorescence.

we focus on the operation of quantum gates on N = 2 ions,
although extension to larger numbers of ions is straightforward.

The ions arrange themselves along the weakest (x-) axis
of the confinement potential, and the position operator of each
ion can be written as R̂i = R0,i + r̂i , with the operator r̂i

describing the small quantum harmonic oscillations of each
ion about its equilibrium position R0,i . Of the six normal
modes of oscillation for the two ions, only the two axial normal
modes will be considered for simplicity (see section 1.1): the
centre-of-mass coordinate q̂1 = (x̂1 + x̂2)/

√
2 and a ‘stretch’

coordinate q̂2 = (x̂1 − x̂2)/
√

2, where x̂i is the component of
r̂i along the x-axis. The base Hamiltonian for the collective
system is

Ĥ0 =
∑

i=1,2

h̄ω0 |↑i〉 〈↑i | +
∑

ν=1,2

h̄ων â†
ν âν (1)

where ω0 is the frequency difference between the qubit states;
ω1 and ω2 = √

3ω1 are the frequencies associated with
the centre-of-mass and stretch modes, respectively; and â†

ν

and âν are their respective harmonic oscillator creation and
annihilation operators. The first term in the Hamiltonian
describes the internal energy of the ions, and the second term
describes the external vibrational energy of the system.

Single-qubit rotations between hyperfine qubit levels
(not involving ion motion) can be performed by applying
appropriate radiation fields. For example, a resonant
microwave field can directly couple the qubit levels through
a magnetic dipole interaction, resulting in coherent Rabi
oscillations between the qubit states. Alternatively, optically
stimulated Raman transitions can be employed [25], using two
optical sources that coherently couple the qubit states through
excited 2PJ electronic states, as discussed next.
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Figure 2. Qubit with coherent Raman coupling via an excited state.
Fields at frequency ωα and ωβ couple the qubit levels |↑〉 and |↓〉 via
the excited state |e〉. The fields are detuned from the excited state
resonances ω̃↑,e and ω̃↓,e by the frequency �.

1.1. Coherent interaction between trapped ion hyperfine
qubits and optical fields

An optical coupling between the hyperfine qubit states and
an excited electronic state of each ion can be exploited to
entangle qubit states with collective motional states, forming
the backbone of most trapped ion quantum logic gates. As
shown in figure 2, we assume that each of two trapped ions
consists of three levels: the two ground state qubit levels |↑i〉
and |↓i〉 and an excited electronic state |ei〉 having respective
optical frequency spans ω̃↑,e and ω̃↓,e = ω̃↑,e + ω0. Two
optical fields El(r) = Ẽl(r) cos(kl · r − ωl t − φl)εl with
l = α, β and polarization εl connect each of the qubit levels
|↑i 〉 and |↓i 〉, respectively, to state |ei〉 through electric dipole
operators µ↑ and µ↓. We assume that the optical fields have a
difference frequency ωβ −ωα = ω0 + δω and are both detuned
from the excited state resonance by � = ω̃↑,e − ωα, as shown
in figure 2. These fields evaluated at the ion’s position El(R̂i )

are what ultimately couples the spin to the motion.
The interaction can be transformed to a rotating frame

at frequency ωα in order to remove all terms varying with
optical frequencies, and under the usual optical rotating wave
approximation (RWA), the interaction Hamiltonian between
the fields and the ions is

ĤI = h̄

2

∑

i=1,2

[ (
g↑,α,i eikα ·R̂i −iφα |ei〉 〈↑i | + h.c.

)

+
(

g↓,β,i e
ikβ ·R̂i−iφβ e−i(δω)t |ei〉 〈↓i | + h.c.

)
+ �|ei〉 〈ei |

]
.

(2)

In this expression, the strengths of the dipole coupling between
the qubit state |mi〉 = |↑i〉, |↓i〉 and excited state |ei〉 from the
laser field l on ion i are given by h̄gm,l,i = −µm ·εl Ẽl(R0,i )/2.

For most of the remainder of this paper (apart from
section 3), we assume that the detuning � of the optical fields
from electronic resonance is much larger than the excited state
linewidth γ and the couplings |gm,l,i |2, so that spontaneous
emission during the optical coupling is negligible [8] and the
excited state |ei〉 can be adiabatically eliminated. We also

assume that the detuning � is not so large that coupling to
multiple fine structure levels results in significant cancellation,
requiring higher order calculations (as in [9]). Applying the
RWA to the microwave frequencies, we find

ĤI = h̄

2

∑

i=1,2

[ (

i e−i(�k·R̂i−(δω)t−�φ)| ↑i〉 〈↓i | + h.c.

)

+ χ↓,i | ↓i〉 〈↓i | + χ↑,i | ↑i〉 〈↑i |
]

(3)

where �k = kβ − kα and �φ = φβ − φα are the differences
in wavevector and phase of the two applied fields, 
i =
g∗

↑,α,i g↓,β,i/2� is the ‘base Rabi frequency’ directly coupling
the qubit states of ion i and χm,i = (|gm,α,i |2 + |gm,β,i |2)/2�

corresponds to the AC Stark shifts of the qubit level |mi〉 of
ion i caused by both optical fields.

For simplicity, we assume that �k is parallel to the x-
axis (�k = |�k|), so that the interaction deals only with axial
motion (although it is straightforward to treat the more general
case). We replace the x component of the position operator R̂i

for ion i by

X̂i = X0,i +
q1√

2
(â1 + â†

1) ± q2√
2
(â2 + â†

2) (4)

where qν = √
h̄/(2Mων) is the root mean square spatial

spread of the ground state wavepacket for the normal mode
ν of oscillation in the trap, M is the single-ion mass and the
plus (minus) sign refers to ion i = 1 (i = 2). In the interaction
frame of the vibrational levels, equation (3) becomes

ĤI = h̄

2

∑

i=1,2

[
(
i e

−i
[
η1(â1e−iω1t +â†

1eiω1t )±η2(â2e−iω2t +â†
2 eiω2t )

]

× ei(δω)t e−i(�kX0,i −�φ)| ↑i〉 〈↓i | + h.c.)

+ χ↓,i | ↓i〉 〈↓i | + χ↑,i | ↑i〉 〈↑i |
]
. (5)

The Lamb–Dicke parameters are defined by η1 = �kq1/
√

2
and η2 = �kq2/

√
2 = η1/

4
√

3, representing the strength of
coupling between the fields and each normal mode.

The above treatment can be generalized to the case of
multiple optical sources that connect both qubit states to any
number of excited states, resulting in higher order expressions
for 
i and χm,i . Here however, we are mainly interested in
the sensitivity of entangling gate operations on the optical
phases φl . The net optical phase appearing in the coupling
Hamiltonian (equation (3)) is sensitive only to the phase
difference �φ = φβ − φα between the two optical fields, so
that when both fields are generated from a single laser and
modulator, fluctuations in the optical phase of the laser source
become common mode and do not lead to decoherence [26].
However, in order to couple the qubits with the motion for
entangling quantum gates, the optical sources are generally
non-copropagating (�k �= 0), opening up the sensitivity to
decoherence from fluctuations in relative beam path lengths
or ion positions through the phase factor ei�kX0,i −i�φ . This
requires interferometric stability between the optical paths of
the fields Eα and Eβ , which should be feasible over short times
using stable optical mounts and indexing the laser beams to
the trap structure itself. However, over the long timescale
represented by an extended quantum computation, drifts in the
phase ei�kX0,i −i�φ can be a serious source of decoherence.
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1.2. Resolved-sideband limit

Equation (3) includes direct couplings between qubit states,
and entangling couplings between qubit states and trapped
ion motional states. We consider the case where the base
Rabi frequencies 
i are much smaller than the vibrational
frequencies ων of the ions in the trap. In this case, the
difference frequency δω of the optical sources can be tuned
to particular values so that a single stationary term emerges
from the above Hamiltonian, and all other couplings can be
neglected under the rotating wave approximation. In this
regime, as seen from the rest frame of the ions, the applied
laser fields acquire resolved frequency-modulation sidebands
from the ions’ harmonic vibration. We concentrate on three
spectral features: the ‘carrier’ and the first upper and lower
sidebands, each selected by appropriate tuning of the radiation
field difference frequency.

1.2.1. The carrier. When the difference frequency of
the optical sources is tuned to the free-ion qubit resonance
(compensating for possible differential Stark shifts, assumed to
be equal for the two ions), thenωβ −ωα = ω0+χ↑,i −χ↓,i ≡ ω′

0
(figure 3(a)), and we find that the stationary term in equation (3)
is given by [8]

Ĥ car
I = h̄

2

∑

i=1,2

∑

n1,n2

(

iDn1,n2 ei(�kX0,i −�φ)σ̂ (i)

+ + h.c.
)

× |n1, n2〉 〈n1, n2| . (6)

This ‘carrier’ interaction describes simple Rabi flopping
between the qubit states in each ion, where the qubit raising and
lowering operators are defined by σ̂

(i)
+ = |↑i〉〈↓i | and σ̂

(i)
− =

(σ̂
(i)
+ )† = |↓i〉〈↑i |. Also, Dn1,n2 = e− 1

2 (η2
1+η2

2)Ln1(η
2
1)Ln2(η

2
2)

is the Debye–Waller factor that exponentially suppresses the
carrier coupling due to ion motion described by vibrational
quantum numbers nν in each mode ν of motion, with Lnν

(z)
being a Laguerre polynomial of order nν [8]. When the ions are
confined to the Lamb–Dicke limit (LDL) where η2

ν (nν+1/2) 

1, then Dn1,n2 � 1. However, if the motion of either mode
is not in a pure eigenstate of harmonic motion and outside
of the LDL, then the Rabi frequency will depend upon the
noisy motional quantum state and lead to qubit decoherence.
In order to avoid this problem, carrier operations are often
performed with copropagating Raman beams (ην = 0) thereby
forcing Dn1,n2 = 1. A carrier transition using a copropagating
geometry can also be insensitive to the phase noise of the source
laser, making it ideal for single-qubit rotations.

1.2.2. The first lower (red) sideband. When the difference
frequency of the optical sources is tuned lower than the free-
atom qubit resonance by the vibrational frequency ων of mode
ν (again compensating for differential Stark shifts), ωβ −ωα =
ω′

0 − ων (figure 3(b)) and we find that the stationary term in
equation (3) is [8]

Ĥ rsb
I = h̄

2

∑

i=1,2

(
ην
i ei(�kX0,i −�φ)D′

nν ,nν′ σ̂
(i)
+ âν + h.c.

)
. (7)

This ‘red sideband ‘interaction describes Rabi flopping be-
tween the coupled qubit motional states |↓, nν〉 and |↑, nν −1〉
in each ion, where D′

nν ,nν′ = e− 1
2 (η2

1+η2
2)

L1
nν−1(η

2
ν )

nν−1! Lnν′ (η
2
ν′) is the

Figure 3. Stimulated Raman transition between vibrational levels.
The coupling depends on the beat note of the two Raman fields
ωβ − ωα: (a) ω′

0 for the carrier transition, (b) ω′
0 − ων for the first

red sideband transition and (c) ω′
0 + ων for the first blue sideband

transition. The qubit frequency splitting shifts from ω0 to ω′
0 due to

the AC Stark effect when the fields are turned on.

Debye–Waller factor for the first sideband, with ν ′ �= ν the
‘spectator’ mode of motion. Here, L1

n(z) is an associated La-
guerre polynomial. This interaction is the Jaynes–Cummings
Hamiltonian [27] where energy is exchanged between the in-
ternal qubit and the external harmonic oscillator states.

1.2.3. The first upper (blue) sideband. When the difference
frequency of the optical sources is tuned higher than the
free-atom qubit resonance by the vibrational frequency ων of
mode ν (once again compensating for differential Stark shifts),
ωβ −ωα = ω′

0 +ων (figure 3(c)) and we find that the stationary
term in equation (3) is now [8]

Ĥbsb
I = h̄

2

∑

i=1,2

(
ην
i ei(�kX0,i −�φ)D′

nν ,nν′ σ̂
(i)
+ â†

ν + h.c.
)

. (8)

This ‘blue sideband’ or anti-Jaynes–Cummings interaction
describes Rabi flopping between the coupled qubit motional
states |↓, nν − 1〉 and |↑, nν〉 in each ion.

1.3. The Cirac–Zoller gate

The original Cirac–Zoller (CZ) scheme [7, 25, 28] illustrates
how entanglement between trapped ion qubits can be achieved
through coupling of each qubit to a common mode of motion in
the trap. The CZ scheme allows the operation of a controlled-
NOT gate between two trapped ion qubits, flipping the state of
a target qubit (e.g., |↓2〉 ↔ |↑2〉) only when the control qubit
is, say, in state |↓1〉. This can be accomplished by cooling a
collective motional mode ν of the two ions to the |0ν〉 ground
state and performing the following three steps:

(1) a carrier π/2 pulse on the target qubit with associated
phase φ,

(2) a π phase gate on two ions,
(3) a carrier −π/2 pulse on the target qubit with phase φ (step

(1) reversed).
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Steps (1) and (3) are simply carrier couplings on the target
qubit ion, achieved by focusing radiation on the target ion
only (
1 = 0) and applying the radiation for a time tπ/2

(|
2|tπ/2 = π/2). Step (1) results in the evolution

α |↑2〉 + β |↓2〉 →
(
α + e−iφβ

)
√

2
|↑2〉 +

(
β − eiφα

)
√

2
|↓2〉 . (9)

Step (3) is identical to step (1) except the phase is shifted by
π. There are many ways to implement step (2), one of which
is:

(i) a π pulse blue sideband that maps the internal qubit state
of the control qubit to the collective state of the ion pair,

(ii) a 2π pulse coupling the |↓2〉|n = 1〉 state exclusively to
an auxiliary level and

(iii) a π pulse on the blue sideband to map the collective
motional state back to the control bit (see figure 4).

The net effect of these steps produces the following phase gate:

|↑↑〉 → |↑↑〉
|↑↓〉 → |↑↓〉
|↓↑〉 → |↓↑〉
|↓↓〉 → − |↓↓〉 .

(10)

Here every state maintains a constant amplitude and the phase
is well defined. However, steps (1) and (3) contribute an
additional phase to the controlled-NOT gate:

|↑↑〉 → |↑↑〉
|↑↓〉 → |↑↓〉
|↓↑〉 → eiφ |↓↓〉
|↓↓〉 → eiφ |↓↑〉 .

(11)

The phase of the Cirac–Zoller controlled-NOT gate therefore
depends solely on the phase of the π/2 pulse single-qubit
rotations. As mentioned in section 1.1, the sensitivity
of single-qubit rotations to optical phase can be removed
using copropagating Raman beams requiring only a stable
microwave source driving an optical modulator. This
conversion between a phase gate and a controlled-NOT gate
is extremely useful for many entangling gate schemes, since
phase gates are more intuitive to construct and have an
inherently well-defined phase.

The CZ model for trapped ion quantum logic gates
has many drawbacks, including the need for individually
addressing the ions with optical sources, and the requirement
that the motion be prepared in a pure state of collective motion,
usually through laser cooling to the |0ν〉 state. In the remainder
of this paper, we consider improved schemes for trapped ion
quantum gates that do not have these requirements. In some
cases, we will see that the sensitivity to the optical phase
ei�kX0,i −i�φ can also be suppressed.

2. Spin-dependent forces in the resolved-sideband
limit

Unlike the Cirac–Zoller gate where the internal qubit
state of one ion is directly transferred to particular
eigenstates of motion, entangling gates using spin-dependent
forces coherently displace the initial motional state in the

Figure 4. Cirac–Zoller gate scheme [7]. A phase gate is constructed
by performing the sequence illustrated here: (i) a π pulse on the first
blue sideband on the first ion to map the internal state to the
collective vibrational state; (ii) a 2π pulse between the |↓, n = 1〉
state and an auxiliary state |aux〉 on the second ion, resulting in a π
phase shift on the state |↓, n = 1〉; (iii) a π pulse on the first blue
sideband on the first ion to map the vibrational state back to the
internal state. A controlled-NOT gate can be constructed from a
phase gate with a π/2 pulse on the second qubit before and after the
phase gate. While the phase gate by definition maintains strict
control of the qubit phase, the controlled-NOT gate relies on the two
additional π/2 pulses having a particular phase with respect to the
qubit.

position/momentum phase space, a process through which
each spin state can acquire an independent geometric
phase [12, 15, 11, 17, 13]. The nonlinearity in these phases can
result in a final state that can no longer be separated into two
independent qubit subspaces, thus entangling the internal states
of the two ions. This produces a phase gate similar to the Cirac–
Zoller scheme, which can then be converted to a controlled-
NOT gate when combined with single-qubit rotations.

In this section, we focus on gates in the resolved-sideband
limit where the interaction time is much longer than the
trap period. The interaction Hamiltonian is proportional to
σ̂1 · n1 ⊗ σ̂2 · n2, where σ̂i is the Pauli spin matrix operating
on the internal qubit states, and ni is a unit vector pointing
in a particular direction on the Bloch sphere for ion i . The
eigenstates of σ̂1 ·n1 ⊗σ̂2 ·n2 each experience a different force
from the interaction (see figure 5). The gates are categorized
according to the direction of ni : in a ‘σ̂z gate’, the differential
force is applied via a differential AC Stark shift on the states
|↑i 〉 and |↓i〉 induced by the laser fields [17]. However, clock
states exhibit no differential AC Stark shift when the Raman
detuning � is large compared to the qubit frequency splitting
ω0 (see appendix A), so the only available qubit states for a
σ̂z gate are thus susceptible to magnetic field fluctuations. In
a ‘σ̂φ gate’, optical fields driving spin flips and coupling to
the motion produce a differential force between eigenstates of
σ̂i · φi , where the unit vector φi = cos(φi)x + sin(φi)y lies
on the equatorial plane of the Bloch sphere [15, 11, 29, 19].
Although this gate is compatible with clock states, the optical
beam configuration can give rise to extreme sensitivity of the
qubit phase on the optical phase of the driving field, which
can be the limiting factor in the fidelity of the gate [29]. In
this section, we propose a method for cancelling this phase
dependence on the optical field, relaxing the constraint on
long-term interferometric stability between the two Raman
beam paths for the entirety of a multi-gate sequence quantum
algorithm.
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Figure 5. Representation of the eigenstate of (a) σ · z and (b) σ · φ
on the Bloch sphere corresponding to the eigenvalue +1. A
spin-dependent force creates two separate coherent states in phase
space corresponding to the eigenstates of σ · n, as represented in (c),
thus entangling the internal spin with the external motion of the ion.

2.1. Forced quantum harmonic oscillator

In order to understand the spin-dependent force, we start by
considering the effects when a force is applied to a harmonic
oscillator. In general, a forced harmonic oscillator has a
Hamiltonian of the form [30]

Ĥ = h̄ω(â†â + 1
2 ) + f ∗(t)x0 â + f (t)x0â†, (12)

where â and â† are the annihilation and creation operators
respectively, and x0 = √

h̄/(2Mω) is the root mean square
spatial spread of the ground state wavepacket. The first term
is the unperturbed Hamiltonian for the harmonic oscillator of
frequency ω, and the last two terms correspond to an external
time-dependent force f (t) applied to the system. In the
interaction picture

ĤI(t) = f ∗(t)x0âe−iωt + f (t)x0 â†eiωt . (13)

Assuming that the force f (t) = Fe−i(ω−δ)t/2 is detuned from
resonance by frequency δ 
 ω, the interaction Hamiltonian
can be rewritten as

ĤI(t) = F∗x0

2
âe−iδt +

Fx0

2
â†eiδt . (14)

The state after an interaction time t is prescribed by the time-
evolution operator

Û (t) = exp

{
− i

h̄

(∫ t

0
ĤI(t

′) dt ′

+ 1
2

∫ t

0
dt ′

∫ t ′

0
dt ′′[ĤI(t

′), ĤI(t
′′)] + · · ·

)}
. (15)

If we consider only the first term in the exponent
of the evolution operator and substitute in the interaction
Hamiltonian from equation (14), the resulting operator is
exactly the displacement operator

D̂(α) = eαâ†+α∗â, (16)

with α defined as

α(t) = − i

h̄

∫ t

0

Fx0

2
eiδt ′

dt ′. (17)

Figure 6. (a) Displacement in phase space, in a frame rotating at the
natural frequency of the harmonic oscillator. The displacement
operator translates motional states in position/momentum phase
space without distortion. (b) For a force detuned from resonance,
the motional state follows a circular path. For a closed trajectory,
the quantum state acquires a geometric phase φ = A/h̄ in a
round-trip orbit, where A is the area enclosed by the trajectory.

The displacement operator translates motional states in
position/momentum phase space without distortion (figure 6).
For example, a displacement on an initial ground state of
motion results in a coherent state |α〉 = D̂(α)|0〉, where
the final state is defined in terms of number states as |α〉 =
e− 1

2 |α|2 ∑∞
n=0

αn√
n!

|n〉. In terms of x–p coordinates, α =
(1/2x0)(x + ip/Mω).

The remaining higher order terms in the time-evolution
operator originate from the property of non-commutativity
of the interaction Hamiltonian at a given time with itself
at different times. This can be understood by considering
the displacement operators, which do not commute with one
another but rather follow the commutation rule D̂(α)D̂(β) =
D̂(α + β)ei Im(αβ∗). Therefore the complete time-evolution
operator can be constructed by integrating over infinitesimal
displacements in time:

Û (t) = ei�(t) D̂(α(t)), (18)

with the geometric phase accumulated over the entire path from
time 0 to t expressed as

�(t) = Im

(∫ t

0
α(t ′)∗ dα(t ′)

)
. (19)

For a near-resonant driving force with detuning δ (equa-
tion (14)), the initial motional state moves in a circular tra-
jectory of radius F/(2h̄δ) with periodicity T = 2π/δ in the
rotating frame of harmonic motion, following the path (from
equation (17))

α(t) = Fx0

2h̄δ

(
1 − eiδt

)
. (20)

In one period of evolution under this force, the motional state
returns to its original phase space coordinates, but acquires a
geometric phase of

�0 = π |Fx0|2
2(h̄δ)2

(21)

equivalent to the area enclosed by the trajectory (figure 6).
For a single qubit experiencing a spin-dependent force, the

interaction Hamiltonian includes a dependence on the internal
spin state of the ion. Assuming that the force couples to
only one of the vibrational modes and the other mode can
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be neglected under the rotating wave approximation, the most
general expression for the interaction Hamiltonian is

ĤI =
∑

m=↑n,↓n

(
F∗

m x0

2
âe−iδt +

Fm x0

2
â†eiδt

)
|m〉 〈m| , (22)

where m denotes the internal qubit state of the ion, and |↑n〉 and
|↓n〉 are the eigenstates of σ̂ ·n associated with eigenvalues +1
and −1 respectively. The interaction provides no coupling
between the two orthogonal spin eigenstates of σ̂ · n, but
the motional state becomes entangled with the spin state as
the differential force pushes the motional states of the two
spin components in separate directions. At time t = 2nπ/δ,
where n is an integer, the two motional states overlap again,
disentangling the vibrational component of the wavefunction
from the spin, but leaving the spin component with a phase
shift due to the difference in geometric phases of the paths.
The interaction Hamiltonian can also be written in terms of
the σ̂ · n operator as follows:

ĤI =
(

F∗
+ x0

2
âe−iδt +

F+x0

2
â†eiδt

)
Î

+

(
F∗−x0

2
âe−iδt +

F−x0

2
â†eiδt

)
σ̂ · n, (23)

where Î is the identity operator, F+ = (F↑n + F↓n)/2 and
F− = (F↑n − F↓n)/2.

Now consider a spin-dependent force applied simultane-
ously to two ions in the same trapping potential. The total force
on the system is now dependent on the spins of both ions. The
interaction Hamiltonian now becomes

ĤI =
∑

m1,m2=↑n,↓n

(
Fm1,m2(t)x0

2
â† +

F∗
m1,m2

(t)x0

2
â

)

× |m1, m2〉 〈m1, m2| , (24)

where m1, m2 denote the internal qubit states of ion 1 and ion 2,
respectively, and Fm1,m2 = Fm1 + Fm2 is the total force applied
to the state |m1, m2〉. The geometric phase of an enclosed loop
is proportional to |Fm1,m2 x0|2/δ (equation (21)), which can be
calibrated so that the nonlinearity results in a wavefunction
whose spins are not factorizable, thus creating entanglement
between two ions.

The following sections will provide specific examples
of entangling gates using spin-dependent forces. While
the fundamental concept is the same in both instances, the
experimental requirements and the susceptibility to various
sources of phase decoherence are distinct. We will discuss
these cases in detail and provide some solutions for phase
control of these gates.

2.2. The σ̂z gate

When the interaction of equation (3) creates a differential
force on the eigenstates of the unperturbed Hamiltonian, the
resulting entanglement operation is called a ‘σ̂z gate’ since the
interaction Hamiltonian has a term proportional to σ̂ · z. This
interaction is special because it does not directly couple the
two eigenstates of σz , and thus the Raman beam frequencies
only need to differ by the vibrational frequency rather than
the much larger qubit frequency. In this case, the Raman
beams form a beating wave, and the ions sample the beats

at a rate of the frequency difference as they travel along the
weakest trap dimension. Due to the AC Stark effect, this wave
becomes essentially a moving periodic potential, exerting a
near-resonant force on the ion in the direction of travel. If the
AC Stark effect has different amplitudes on the qubit states,
then the forces experienced by the two states will also be
different [17].

The σ̂z gate is driven by two non-copropagating beams
with frequency difference ων −δ, where ων is the frequency of
vibration and δ is the detuning from the vibration frequency.
For this example, we will let the beams couple to the stretch
mode ω = ω2 = √

3ω1, though the same algebra can be
carried out for the centre-of-mass mode. (The stretch mode is
a better candidate since it exhibits lower levels of decoherence
from background electric fields [20].) We apply two fields
E Aei(kA·x−ωAt−φA)εA+EBei(kB ·x−ωBt−φB )εB where the frequency
differenceωB −ωA = ω2−δ is slightly detuned from the stretch
mode frequency. The field couples each of the spin states to
the excited P state, and is detuned by a large frequency � (see
figure 7). Using the same RWA and adiabatic elimination of
the excited state used to obtain equation (3), the interaction
Hamiltonian for a single ion (i = 1) becomes

ĤI = h̄

2

{[
χ↑,1 +

(
�↑,1ei(�k·R̂1−(ω2−δ)t−�φ) + h.c.

)]
|↑1〉 〈↑1|

+
[
χ↓,1 +

(
�↓,1ei(�k·R̂1−(ω2−δ)t−�φ) + h.c.

)]
|↓1〉 〈↓1|

}

(25)

where χm,1 = (|gm,A,1|2 + |gm,B,1|2)/2� is the time-averaged
Stark shift on the state m = ↑1,↓1 and �m,1 = g∗

m,A,1gm,B,1/�

is the time-varying component in the Stark shift due to the
variation in the intensity formed by the interference pattern
that pushes the ion. Here, gm,l,1 = µm · εl El/2h̄ are the
single-photon Rabi frequencies associated with each field l
coupling qubit state |m1〉 to excited level |e1〉, �k = kB − kA

is the wavevector difference and �φ = φB − φA is the phase
difference between the driving fields. The time-averaged Stark
shifts can be equalized (χ↑,i = χ↓,i ) by carefully choosing the
Raman detuning � (with coupling to auxiliary excited levels)
and the polarizations εA and εB [18]. The �m,i terms result in
a time-dependent force applied to each state. For �↑,i �= �↓,i ,
a differential Stark shift creates a differential force between
the qubit states. In the Lamb–Dicke limit, assuming that the
detunings � are approximately the same for the two spin states
(� � ω0), the interaction Hamiltonian for two ions can be
written as

ĤI = h̄

2

∑

i=1,2

∑

mi=↑,↓
η2�mi ,i D′

n2,n′
2

×
(

â2e−i(δt−φi ) + â†
2ei(δt−φi )

)
|mi〉 〈mi |

=
∑

m1,m2= ↑,↓

(
F∗

m1,m2
q2

2
â2e−iδt +

Fm1,m2 q2

2
â†

2eiδt

)

× |m1m2〉 〈m1m2| , (26)

where Fm1,m2 q2 = (h̄η2 D′
n2,n2

)(�m1,1eiφ1 − �m2,2eiφ2), and
φi = �k X0,i − �φ.

The phase difference between the forces applied to the
two ions is determined by the optical phase difference φ1 −φ2,
which corresponds to the ion spacing at equilibrium. If the ions
are spaced by an integer multiple of the optical wavelength,
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Figure 7. A σz-dependent force is driven by electromagnetic fields
with two frequencies separated by ων + δ, as shown in (a). These
fields couple the qubit states to the excited states with different
coupling strengths (depending on polarization), producing a
differential AC Stark shift that oscillates at ων + δ. The two fields
must have a non-zero wavevector difference �k = kB − kA with a
component in the x direction.

i.e. �k(X0,1 − X0,2) = 2nπ , then they experience the same
phase in the force, i.e. φ1 = φ2 (see figure 8). This is a
convenient case since the forces cancel when the two spins are
aligned in the same direction, and displacement occurs only
when the spins are anti-aligned. A physical explanation of this
scenario is that the stretch mode can be excited only when the
two ions are pushed in different directions or with different
magnitudes. The fastest gate time possible for this scheme is
when the anti-aligned states acquire a π/2 phase shift in time
T = 2π/δ, or in other words, a round-trip geometric phase
�0 = π |F↑,↓q2|2/2(h̄δ)2 = π/2. Under these conditions, and
assuming that all the average Stark shifts have been accounted
for, the gate performs the operation [17, 12]

|↑↑〉 → |↑↑〉
|↑↓〉 → i |↑↓〉
|↓↑〉 → i |↓↑〉
|↓↓〉 → |↓↓〉 .

(27)

With a phase shift of −π/2 on both qubits, the final state
is equivalent to the result from a standard phase gate in
equation (10).

Note that the end result is completely independent of the
optical phase of the drive field. The optical phase φi is absorbed
in the term Fm1,m2 , translating to a phase shift in α that defines
the coherent state. Since the acquired geometric phase depends
only on the area enclosed by the trajectory, the phase of the
resulting state has no correlation with the phase of Fm1,m2 .
While the optical phase still needs to be coherent during a
gate, variations in phase between gates are acceptable since
they have no impact on the outcome.

The analysis so far has assumed that instantaneous
differential Stark shifts are different for the two qubit levels
(�↑,1 �= �↓,i ), which is not true for all pairs of qubit states. For
example, magnetic field insensitive states have no differential
Stark shift in the limit of large Raman detuning � � ω0

(see appendix A). Therefore, in order to use this σ̂z gate,

Figure 8. The spacing of the two ions determines the relative phase
of the optical field experienced by each ion. (a) The ions drawn are
spaced by an integer multiple of the optical wavelength, creating an
equal force on the two ions given the same internal state. In this
scenario, (b) spin states with opposite parity can excite the stretch
mode, and the geometric phase acquired by each state is
proportional to the area covered by the trajectory in phase space
(π/2 for the phase gate shown in equation (27)). The spin states
with the same parity remain at the origin (not shown here) and
acquire no geometric phase.

we must either select magnetic field sensitive states as qubit
levels, or have a smaller Raman detuning approximately of
the order of the qubit frequency (� ∼ ω0). However,
magnetic field sensitive states are susceptible to decoherence
from background magnetic field fluctuations, and a smaller
Raman detuning also results in higher levels of decoherence
from spontaneous emission. In section 2.3, we will describe
another gate using a spin-dependent force in a different basis
that can operate on magnetic field insensitive clock states.

2.3. σ̂φ gate

The gate scheme proposed by Mølmer and Sørensen [15, 11]
is called a σ̂φ gate because the interaction is analogous to the
σ̂z gate except that it operates in a rotated basis. Although
the original treatment calls for the sideband frequencies to
be far detuned from vibrational resonance and describes the
interaction in a four-level ladder system, here we consider the
case where the sideband frequencies are closely detuned from
vibrational resonance for maximal gate speed and treat the
interaction in terms of displaced motional states as described in
section 2.1. The Mølmer–Sørensen gate employs simultaneous
addressing of the two ions with bichromatic fields, one detuned
from the blue sideband of a vibrational mode by frequency δ

and the other from the red sideband by −δ. The two sidebands
have equal strength ην
/2 in the Lamb–Dicke limit, and once
again we assume that the force couples only to the stretch
mode. The interaction Hamiltonian is simply the sum of the red
sideband plus the blue sideband (from equations (7) and (8))
with a detuning δ:

ĤI = h̄

2

∑

i=1,2

η2
i D′
n2,n′

2
(ei(�kr X0,i −�φr)σ̂ (i)

+ â2e−iδt

+ ei(�kb X0,i −�φb)σ̂ (i)
+ â†

2eiδt + h.c.), (28)

where η2
0 D′
n2,n′

2
is the sideband Rabi frequency, �kr and �kb

are the wavevector differences for the red and blue sidebands,
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X0,i indicates the equilibrium position of the i th ion along the
x-axis and �φr and �φb are the phases of the red and blue
sidebands respectively. We can simplify this expression to

ĤI =
∑

i=1,2

Fi q2

2
σ̂φS,i (e

iφM,i â2eiδt + e−iφM,i â†
2e−iδt)

=
∑

m1=↑φS,1 ,↓φS,1

∑

m2=↑φS,2 ,↓φS,2

(
F∗

m1,m2
q2

2
â2eiδt

+
Fm1m2 q2

2
â†

2e−iδt

)
|m1m2〉 〈m1m2| , (29)

where

σ̂
(i)
φS,i

= σ̂i · [
cos(φS,i)x + sin(φS,i)y

]

= σ̂ (i)
+ e−iφS,i + σ̂

(i)
− eiφS,i . (30)

Here Fi q2 = h̄η2
i D′
n2,n′

2
is the differential force on the

i th ion, φS,i = −(�kr X0,i − �φr + �kb X0,i − �φb)/2 is
the spin phase of the i th ion, φM,i = (�kr X0,i − �φr −
�kb X0,i + �φb)/2 is the phase of the force on the i th ion and
Fm1,m2 = ±F1e−iφM,1 ±F2e−iφM,2 where +Fi (−Fi ) corresponds
to the force on the spin state mi = ↑φS,i (mi = ↓φS,i ) on the
i th ion. As in the σ̂z gate, we set the phases of the forces
acting on the two ions to be opposite, i.e. F1eiφM,1 = −F2eiφM,2 ,
and choose δ and F such that the round-trip geometric phase
satisfies the condition �0 = 2π |F1q2|2/(h̄δ)2 = π/2. Then
the final state of the gate is equivalent to the final state in
equation (27), except that |↑i 〉 and |↓i〉, the eigenstates of σ̂ (i)

z ,
are replaced by |↑φS,i

〉 and |↓φS,i
〉, the eigenstates of σ̂

(i)
φS,i

. This
gate written in the σ̂z basis produces the following truth table:

|↑↑〉 → 1√
2

{|↑↑〉 − iei(φs1+φs2) |↓↓〉}

|↑↓〉 → 1√
2
{|↑↓〉 − i |↓↑〉}

|↓↑〉 → 1√
2
{|↓↑〉 − i |↑↓〉}

|↓↓〉 → 1√
2

{|↓↓〉 − ie−i(φs1+φs2) |↑↑〉} .

(31)

Note that after the gate, only the spin phase remains, while
the motion phase has no effect on the final state. As in
the σ̂z gate, drifts in the motion phase between gates is
acceptable. However, the spin phase must be maintained
between gates, or alternatively, an equivalent entangling gate
with the dependence on the spin phase removed can be formed
using a combination of σ̂φ gate and other quantum operations.

An analysis of noise sources for the spin phase requires
careful consideration of the physical experimental set-up in
the laboratory. To drive the red sideband and the blue
sideband transitions simultaneously, a minimum of three
optical frequencies are required, assuming that one frequency
can be used for both sideband couplings (see figure 9). Since
each pair of frequencies driving a sideband must have a non-
zero wavevector difference �k, the optical beams can be
set up such that each of the two frequencies in the field
travelling along wavevector kB drives a sideband transition
when combined with a single frequency field travelling along
a different wavevector kA. In other words, if the field along
kA has frequency ωA, then the field propagating along kB

contains both a frequency component ωA ± (ω′
0 − ω2 − δ)

to drive a detuned red sideband and a frequency component
ωA ±(ω′

0 +ω2 +δ) to drive a detuned blue sideband. The choice

Figure 9. A σ̂φ-dependent force is driven by electromagnetic fields
with at least three optical frequencies as shown in (a). Two
frequencies separated by ω′

0 − ων − δ drive a detuned red sideband
and a third frequency differs from one of them by ω′

0 + ων + δ to
drive a detuned blue sideband. (i) and (ii) are two examples of
possible frequency configurations. Some of the fields can have
overlapping wavevectors, but any pair of frequencies that drives a
sideband must have a non-zero wavevector difference with a
component in the x direction.

of the positive or negative frequency differences between the
fields determines the sign of �kr and �kb, and determines
the gate’s susceptibility to the phase stability between the two
wavevectors.

2.3.1. Phase sensitive geometry. The first scenario involves
frequencies of both fields along kB being higher (or lower)
than ωA. Then the wavevector differences �k for both the
red and the blue sideband propagate in the same direction
(figure 10(a)). For example, let the field along kB include both
ωA + ω′

0 −ω2 − δ and ωA + ω′
0 + ω2 + δ frequency components.

Then the wavevector differences�kr = kB−kA = �kb for the
red sideband and the blue sideband point in the same direction.
Instability in the relative beam paths results in an equal phase
shifts in the sideband transitions, i.e. δφr = δφb = δφ. This
results in a net shift in the spin phase by δφS,i = δφ. This is not
a desirable situation since the outcome of the gate is sensitive
to changes in the beam path length difference on the scale of
an optical wavelength.

However, we note that the spin phase shift is exactly the
same as the arbitrary phase shift on the non-copropagating
carrier transition (driven with the field propagating along kB

having frequency ωA + ω′
0) due to the same changes in the

interferometer paths. Therefore it is possible to construct a
phase gate using the following Ramsey experiment:

(1) perform a π/2 rotation on both ions with phase shift
δφS,i = δφ using the non-copropagating transition;
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Figure 10. Possible beam configurations for the σφ gate. (a) Phase
sensitive configuration. The wavevector differences for pairs of
frequencies driving the red sideband and the blue sideband travel in
the same direction, �kr = �kb, using the frequency configuration
shown in figure 9(a) (i). A phase shift δφ in one beam path results in
a phase shift in the spin of the entangled state. (b) Phase insensitive
configuration. The wavevector differences for pairs of frequencies
driving the red sideband and the blue sideband travel in the opposite
direction, �kr = �kb, using the frequency configuration shown in
figure 9 (a) (ii). A phase shift δφ in one beam path results in no net
phase shift in the spin of the entangled state.

(2) perform the σ̂φ gate using the frequencies listed above;
(3) perform a −π/2 rotation on both ions with phase shift

δφS,i = δφ using the non-copropagating transition.

This rotation from z to φ before the σ̂φ gate and the subsequent
rotation back to z after the σ̂φ gate effectively remove the
dependence on the spin phase φ as long as the spin phase
is constant during the Ramsey experiment. The final state
becomes identical to equation (27) and has no residual
dependence on δφ. In addition, this scheme is also insensitive
to ion spacing since the phase of the push force is always zero
in the basis defined by φS,i .

2.3.2. Phase insensitive geometry. Another scenario is
selecting the frequencies along kB to straddle the frequency
along kA. Then the wavevector differences for the red and the
blue sideband propagate in opposite directions. For example,
let the field along kB include both ωA − (ω′

0 − ω2 − δ)

and ωA + ω′
0 + ω2 + δ frequency components (figure 10(b)).

Then the wavevector difference for the red sideband �kr =
−kB + kA = −�kb is in the opposite direction to that for the
blue sideband. Instability in the relative beam paths results in
opposite phase shifts in the sidebands, i.e. −δφr = δφb = δφ.
This results in a net zero change in the spin phase δφS,i = 0,
removing any spin phase dependence on δφ from the gate.
Hence this configuration is termed ‘phase insensitive’.

However, the motion phase in this set-up acquires a
dependence on the phase shift δφ. Therefore the phase of
the force on each ion should be calibrated to be the same by
setting the ion spacing (using the trap frequency as a tuning
parameter) equal to X0,1 − X0,2 = 2nπ/�k, where n in an
integer. While it is possible to produce similar entanglement
operations with other values of ion spacing, the gate speed
will be slower for the same intensity from the laser, and the

P
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Figure 11. Demonstration of the phase sensitivity of the
Mølmer–Sørensen (σφ) force applied to a single ion using different
beam configurations. (a) Pulse sequence of a photon-echo
experiment for testing optical phase sensitivity of the σφ force. The
echo pulses are carrier transitions driven by non-copropagating
Raman beams propagating along the same wavevectors as the σφ

force, and an applied phase shift φ0 is added using an acousto-optic
modulator that controls the timing of the pulse. The σφ force is
applied for sufficient time that the two motional states
corresponding to spin states |↑φ〉 and |↓φ〉 have very little overlap at
time τ . A separate pulse in the other arm of the echo experiment
cancels the residual AC Stark shift induced by the field driving the
σφ force (the ratio ω0/� is significant enough to produce a
non-negligible differential Stark shift of the qubit states in this
experiment). (b) Probability of detecting |↓〉 versus applied shift in
the phase of the echo pulses φ0 using the phase sensitive
configuration described in section 2.3.1 and figure 10(a). The fringe
contrast shows coherence of the phase φ in the σφ force and the
phase φ0 in the Raman carrier pulses (the probability should vary
sinusoidally from 0 to 0.5 when there is no decoherence). (c) The
same plot using the phase insensitive configuration described in
section 2.3.2 and figure 10(b). This time there is no coherence
between the phase insensitive σφ force and the phase sensitive
non-copropagating Raman carrier pulses.

output will include additional phases from the expression in
equation (31).

Like for the other configuration, it is possible to construct
a phase gate with the transformation in equation (27), using an
analogous Ramsey experiment involving single-qubit rotations
in phase with the gate:

(1) perform a π/2 rotation on both ions with phase shift
δφS,i = 0 using either a calibrated and phase locked
microwave source or a copropagating Raman carrier
transition;

(2) perform the σφ gate using the frequencies listed here;
(3) perform a −π/2 rotation on both ions with phase shift

δφS,i = 0.

3. σz gate with fast pulses

The σz gate can also be achieved by applying spin-dependent
momentum kicks to the ions with fast laser pulses [13, 31].
For gates in the resolved-sideband limit discussed in section 2,
the ion is assumed to be confined within the Lamb–Dicke
limit, where the spread in the position of the ions from
their equilibrium positions is much smaller than the optical
wavelength. Outside of this limit, the effective Rabi frequency
fluctuations lead to significant gate errors due to the Debye–
Waller factor. For gates using fast laser pulses [13, 31],
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this fluctuation of the effective Rabi frequency can be safely
neglected, with the assumption that the impulsive spin-
dependent force from the travelling wave has an almost
uniform intensity distribution around the ion’s position. These
pulsed gates can therefore faithfully operate outside of the
Lamb–Dicke limit. In this section, we want to show that
non-trivial phase errors can arise when the ions are outside
the Lamb–Dicke limit, and suggest a method for cancelling
these errors by carefully selecting the direction and timing
of the momentum transfer, a technique reminiscent of the
phase cancellation effect in the phase insensitive σφ gate
configuration discussed in section 2.3.2.

The central component of the fast σz gate in the context of
ground state hyperfine qubits is a set of fast resonant laser pulse
pairs that exclusively couple one of the qubit states (here taken
to be |↓〉) of each ion to the excited state |e〉. The coupling
Hamiltonian follows from equation (2) with � = 0:

ĤI = h̄
∑

i=1,2

−
(

g(t)

2
eik·X0,i −iφ

× e−iη1(â1+â†
1 )∓iη2(â2+â†

2 )|ei〉 〈↓| + h.c.
)

(32)

where g(t) is the resonant Rabi frequency of the transition for
each ion and as before, the plus (minus) sign refers to ion i = 1
(i = 2). The pulse pairs are set to drive successive π pulses
(
∫ τ

0 g(t) dt = π) from |↓i〉 → |ei〉 → |↓i〉 on the electronic
transitions of each ion, with the pulse duration τ taken to be
much shorter than the radiative lifetime of |e〉 as well as the
trap period 2π/ων .

When these two successive fast pulses have non-
copropagating wavevectors kA and kB , and both π pulses are
completed in a time much shorter than the lifetime of state |ei〉,
the result is the following evolution for two ions [32, 13]:

↑1↑2 |α〉1 |α〉2 → ↑1↑2 |α〉1 |α〉2

↑1↓2 |α〉1 |α〉2 → ↑1↓2 |α + iη1〉1 |α − iη2〉2
↓1↑2 |α〉1 |α〉2 → ↓1↑2 |α + iη1〉1 |α + iη2〉2
↓1↓2 |α〉1 |α〉2 → ↓1↓2 |α + 2iη1〉1 |α〉2 .

(33)

In this expression, |α1〉 and |α2〉 are initial coherent states of the
two modes of motion, and ην are the Lamb–Dicke parameters
of the two modes associated with the wavevector difference
�k j ≡ kA − kB , exactly as defined in section 1.1.

In the fast σz gate, a series of pulse pairs is applied to
the ions so that the motional states of both modes of motion
simultaneously return to the same position in phase space
regardless of the state of the two qubits. When these fast
pulses are interspersed with periods of free evolution of the
two modes of harmonic motion, the result can be a σz phase
gate for appropriate choices of pulse timing [13, 31]. This fast
gate works independently of the motional state and outside of
the Lamb–Dicke limit, as long as the motion remains harmonic.

However, outside of the Lamb–Dicke regime, we find that
this gate can be sensitive to changes in the phase of the optical
fields due to the change in the position of the ions at different
times. In order to see this effect, we note that this fast σz gate
involves a spin-dependent force on the ion from absorption of
a photon from a laser pulse travelling in the kA direction and
emission of another photon to a pulse propagating in a different
kB direction. We can lock the relative phase of these two

propagating laser beams so that their phase difference is set to
zero at the ion’s equilibrium position. Then, if during the above
impulsive kicks, the ion is at a position r from its equilibrium
site, it will acquire a net spin-dependent phase factor of ei�k·r

from the absorption and the emission of the photon. This phase
factor from each spin-dependent kick is non-negligible if the
ion is outside of the Lamb–Dicke limit. For a complete gate
operation with a series of laser kicks, with the spin-dependent
phase factor for the j th kick denoted by ei�k j ·r j , the total phase
factor after N kicks is given by eiϕt with ϕt = ∑N

j=1(�k j ·r j ).
If the gate speed is comparable to or slower than the local
ion oscillation frequency, the ion’s position r j at different
laser kicks depends on the initial momentum and positions.
Therefore, the above effect contributes a random phase to the
spin, which is a source of gate infidelity.

To eliminate this random phase effect when the ion is
outside the Lamb–Dicke limit, one needs to require the gate
speed to be significantly faster than the local ion oscillation
frequency. In that case, the ion’s positions at different laser
kicks are almost the same although they are still unknown.
For any two positions r j and rk during the j th and kth kicks
respectively, the difference between them can be bounded as
|rk − r j | � vTg, where v is the ion’s typical speed and Tg

denotes the gate time. Due to this position correlation and the
fact that the total of momentum kicks

∑N
j=1 �k j = 0 for the

fast gate, we conclude that the random phase ϕt is bounded by
ϕt � |�k j |vTg, and the gate infidelity δF ≡ 1 − F from this
random phase scales as (|�k|vTg)

2. The scaling of δF can
be further improved to (|�k|vTg)

2n if we use a more involved
sequence of the kicking forces with n basic cycles. The gate
time must be short enough to make the scaling parameter
|�k|vTg < 1. Under that condition, the gate infidelity can then
be reduced rapidly to zero with an appropriate pulse sequence
even if the ion is outside of the Lamb–Dicke limit [31].

4. Conclusion

Most quantum logic gate schemes for trapped ions operate
through interactions with optical electromagnetic fields. Some
schemes, such as the σφ gate and the fast σz gate, have
a phase dependence on the phase of the optical driving
field, which can become a major source of decoherence if
uncontrolled. We have shown here methods for removing this
phase dependence for these two entangling gates by choosing
appropriate wavevector orientations and pulse timings that
naturally cancel the phase factor ei�k·r upon the completion
of the gate. Furthermore, the sideband resolved σφ gate can
operate on magnetic field insensitive qubit states, removing
an unavoidable vulnerability of the σz gate. These techniques
eliminate the random phase from the optical driving field while
maintaining phase coherence at the rf or microwave atomic
frequencies, allowing long gate sequences to be performed
over timescales beyond the coherence time of the optical fields.
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Appendix A. Magnetic field insensitivity

In this appendix we will show that magnetic field insensitive
states have no differential Stark shift in the limit where
the detuning from the excited state is much larger than the
hyperfine splitting, i.e. �HF/� → 0 [33]. To find the field
insensitive states for a system in the S1/2 ground state with
some nuclear spin I , we write down the Hamiltonian for the
hyperfine interaction in the presence of a magnetic field B:

Ĥ = −µ · B + AÎ · Ĵ = gJ B · Ĵ + gI B · Î + AÎ · Ĵ, (A.1)

where Ĵ is the total angular momentum of the electron, Î
is the nuclear spin and AÎ · Ĵ is the contact term. gI and
gJ are the Landé g-factors for the nucleus and the electron.
The eigenstates of the Hamiltonian are linear combinations of
m F(m) states (the z component of the total angular momentum
is determined by the state labelled by m = ↑,↓), and can be
represented as |�m〉 = am

∣∣g; m J = 1
2 , m I = m F(m) − 1

2

〉
+

bm

∣∣g; m J = − 1
2 , m I = m F(m) + 1

2

〉
. The coefficients am and

bm are functions of the magnetic field. If two states |�↑〉 and
|�↓〉 are magnetic field insensitive, then the energy difference
between the two states has no first-order dependence on the
magnetic field:

∂

∂ B

(E↑ − E↓
) = 0. (A.2)

Applying Ehrenfest’s theorem,

∂Em

∂ B
= 〈gJ Jz + gI Iz〉 = |am |2

[
gJ

2
+ gI

(
m F(m) − 1

2

)]

+ |bm |2
[

gJ

2
+ gI

(
m F(m) +

1

2

)]
. (A.3)

Normalization of the eigenstates and solving equation (A.2)
gives the result |a1|2 = |a2|2 + gI �m F/(gJ − gI ). Since the
dipole moment of the electron dominates the dipole moment
of the nucleus, i.e. gI /gJ ≈ 10−3, we can approximate it as

∣∣a↑
∣∣2 = ∣∣a↓

∣∣2

∣∣b↑
∣∣2 = ∣∣b↓

∣∣2
.

(A.4)

Now consider the Stark shift for each of these magnetic
field insensitive states. The total AC Stark shift is given by

h̄�m =
∑

m J ,m I

〈�m |µ · E |e; m J m I 〉 〈e; m J m I | µ · E |�m〉
h̄� − E↑ + Em

= h̄

2

(
χm + �mei(�kR−δωt−�φ)

)
, (A.5)

where |e; m J , m I 〉 is the excited state with the corresponding z
component of the electron and nuclear spins. In the numerator
of equation (A.5), components of the field with the same
frequency give rise to the time-averaged Stark shift term
h̄χm/2, and components of the field with different frequencies
give rise to the time-varying term h̄�m/2 oscillating at the
frequency difference δω = ωA − ωB . The expression here is
equivalent to equation (25), and a dependence of the time-
varying Stark shift �m on state m is required for the σz

gate. Since the electric dipole only couples the orbital angular

momentum of the electron, �m only couples to the states with
the same m I . So the expression can be simplified to

h̄�m = |am |2
∑

m J

∣∣〈g; m J = 1
2

∣∣ µ · E |e; m J 〉
∣∣2

h̄� − E↑ + Em

+ |bm |2
∑

m J

∣∣〈g; m J = − 1
2

∣∣ µ · E |e; m J 〉
∣∣2

h̄� − E↑ + Em
. (A.6)

If the energy difference between the two states �↑ and �↓ is
small compared to �, applying the results from equation (A.4),
we find that �↑ = �↓. So we conclude that the energy shifts
due to the Stark effect are the same for any two magnetic field
insensitive states.

Appendix B. Driving stimulated Raman transitions
using an electro-optic modulator

The fields driving the stimulated Raman transition in ions are
typically generated from a single laser source with the multiple
frequencies generated by optical modulators. Acousto-optic
modulators can produce frequency shifts up to about 1 GHz,
while electro-optic modulators can modulate at upwards of
10 GHz or more. The electro-optic modulator offers a
solution for driving Raman transitions in ion species with
a large hyperfine splitting, but unlike the case for acousto-
optic modulators, all frequencies in the modulated field have
the same wavevector, making it difficult to separate different
frequency components.

Electro-optic modulators control the birefringence of
uniaxial crystals with a lower frequency electric field,
effectively modulating either the phase or the polarization
of the incident optical field, depending on the orientation of
the optical axes. Since the Raman coupling is polarization
dependent, the polarization modulation is equivalent to an
amplitude modulation. For non-copropagating Raman beam
geometry, the modulated field is divided using a beam splitter
and the two beams recombine at the trap from different angles.
If the difference between any frequency from one beam and any
frequency from the other beam matches the energy splitting
of two atomic and/or phonon levels, then a transition can
potentially be driven. However, the amplitude of each pair of
frequencies driving the transition can result in cancellations
in the total transition rate. Usually, amplitude modulation
produces sidebands with the same phase, resulting in the
transition rates adding constructively. But phase modulation
produces a comb of sidebands, some having amplitudes with
opposite phases, which could result in a total transition rate of
zero. This problem can be remedied by setting the beam path
length difference between the two beams to certain values that
produce a non-zero total transition rate [34]. This effectively
adds a different phase to each sideband, resulting in a transition
rate proportional to the squared electric field:

�k(φ) ∼
∞∑

n=−∞
Jn(φ)einθ Jn+k(φ)ei(n+k)θ = Jk (2φ sin (θ))

(B.1)
where Jn(x) is the nth-order Bessel function. Equation (B.1)
describes the Raman transition rate involving the optical carrier
and the kth frequency modulated sideband with modulation
index φ with a phase shift of θ = (δk�x) mod(2π). Here δk
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Figure B.1. Raman spectrum of two ions in the trap using a
frequency comb generated by an electro-optic modulator
(modulation frequency ωEO − ω0 = 1.5 MHz in this case). The
x-axis shows the frequency difference between the fields along the
two beam paths. The carrier transition appears at ±1.5 MHz (C),
with the corresponding first centre-of-mass blue sideband transition
at ∓0.6MHz (B1) (ω1/2π = 2.1 MHz), the first centre-of-mass red
sideband transition at ±3.6 MHz (R1), the first stretch mode blue
sideband at ∓2.1 MHz (B2) (ω2/2π = 3.6 MHz) and the first
stretch mode red sideband at ±5.1 MHz (R2).

is the wavenumber associated with the modulation frequency
and �x is the beam path length difference.

To avoid nullifying the average intensity due to destructive
interference between the two fields at the ion, the field
propagating along one path can be frequency shifted slightly
from the field in the other path. The modulation frequency
would then have to be adjusted to compensate for this
frequency shift so that pairs of frequencies match the energy
difference between the two coupled levels. When the
frequency offset is accounted for, all the �k vectors driving
the transition have the same sign, and the resulting transition
is exactly the same as if each of the two beams had only a
single frequency. To reverse the �k vector, only the frequency
offset on one beam needs to be changed. For example, to
drive a Raman transition between two levels which have an
energy splitting of h̄ωtransition, the modulation frequency of the
EOM can be set to ωEO < ωtransition. The modulated beam
is split into two paths, with the beam in path A frequency
shifted by ωoffset and the beam in path B frequency shifted by
ωoffset + ωtransition −ωEO. The two beams are recombined at the
ion, with wavevectors kA and kB respective to beam paths A
and B. In this case the wavevector difference �k for the Raman
transition is equal to kB − kA, since the beam in path B has
higher frequency. The beam in path B can also be frequency
shifted by ωoffset + ωEO − ωtransition instead, in which case the
wavevector difference �k would be kA − kB since the beam
in path A would have the higher frequency.

The reversal of �k is useful in the phase stable
configuration for a σφ gate (see section 2.3.2). To generate

red and blue sidebands with opposite wavevector differences,
�kr = −�kb, the frequency of the field along kB can be
shifted by ωoffset + ω′

0 − ω2 − δ − ωEO to generate the red
sideband and by ωoffset −ω′

0 −ω2 −δ+ωEO to generate the blue
sideband. These two frequencies can be made arbitrarily close
to one another by tuning the modulation frequency of the EO
close to the qubit frequency splitting ω′

0, which allows both
frequencies to be generated using a single frequency shifter
with a given bandwidth. However, if the modulation frequency
of the EO is exactly ω0, then each beam would simultaneously
drive a copropagating carrier transition (see section 1.2.1)
that would interfere with the σφ operation. Therefore the
modulation frequency should be tuned to approximately but
not exactly ω′

0.
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