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Abstract
Trapped-ion processors constitute a leading platform for quantum computing and

quantum networking because of qubits that exhibit exceptional coherence and high-

fidelity logic. Scaling these systems to larger registers, however, remains non-trivial.

A scalable architecture can be realized by linking smaller computing modules with

photonic interconnects, forming a modular network that is agnostic to the underlying

hardware design. In an earlier work, we remotely heralded ion–ion entanglement at

250 s´1 using the photon’s polarization degree of freedom. This was the fastest

entanglement rate in two quantum memories mediated by photons [1]. However,

uncontrolled birefringence in optical elements imposed fidelity limits on the entangled

states.

Here we replace polarization with time-bin encoding, where we distribute entan-

glement via time-binned photons that are immune to polarization rotations. This

strategy enables heralding of Bell states with a fidelity of 97%, the highest reported

for photon-mediated ion-ion entanglement. During these experiments, we identified

and quantitatively characterized an unexpected decoherence channel arising from re-

coil of the emitting ion, marking the first direct observation of this effect. Finally, we

generalize this protocol by using higher-dimensional time-bin photons to distribute

entanglement across the levels of an atomic qudit.
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1

Thesis Outline

This thesis is organized to follow the progression of ideas and experiments that

led to the results presented here. It begins with an overview of quantum computing

and the motivation for using atomic ions as qubits. The following chapters cover

how we trap and control these ions, how we use light to manipulate them, and how

we generate entanglement between distant ions using photons. The final chapters

focus on our work with time-bin–encoded photons and how we use high-dimensional

entangled states to herald entanglement. A brief outline of each chapter is given

below.

1.1 Thesis Outline

1. Introduction: This chapter introduces the foundations of quantum computing,

including its historical context, key algorithmic breakthroughs, and various

physical platforms under exploration. It discusses the resource requirements

for quantum advantage and motivates the use of atomic systems as a scalable

platform. The chapter concludes by introducing photonic interconnects as a

pathway toward scaling atomic qubit systems to the utility level.

2. The Qubit: Ions This chapter motivates the use of atomic ions as qubits and

compares different encoding schemes in both atomic and photonic systems. It

highlights the complementary roles of atoms (as memory and processing units)

and photons (as communication carriers), and explores how atom–photon in-

1



terfaces form the basis for implementing photonic interconnects.

3. Qubit Confinement: Ion Trapping This chapter covers the principles of ion

trapping, focusing on radiofrequency (Paul) traps. It describes the design,

implementation, and operational parameters of the linear four-rod traps used in

this work and discusses practical aspects such as ion loading, and micromotion

minimization.

4. Qubit Control: Light-atom interaction This chapter presents the methods for

coherent and dissipative control of trapped-ion qubits through light–matter

interactions. It focuses on laser-based techniques required for state preparation,

manipulation, and readout.

5. Remote entanglement of trapped atomic ions: This chapter details remote en-

tanglement protocols and their relevance to scalable quantum computing. It

reviews our past work on polarization-based entanglement schemes and high-

lights some of it’s drawbacks.

6. Time-bin mediated remote entanglement: This chapter presents time-bin en-

coding as an alternative to polarization encoding. It covers the theory behind

time-bin schemes, describes the experimental setup in detail, and reports re-

sults—including the highest heralded-entanglement fidelity achieved to date.

7. Higher dimensional quantum networking of atoms: This chapter describes

the extension of time-bin encoding to higher-dimensional entangled states. It

presents our protocol for heralding bipartite entanglement in a larger Hilbert

space and discusses how this approach can surpass the traditional Bell-state

heralding limit of 1/2. Experimental methods and implications for quantum

networking are also discussed.

8. Conclusion: The final chapter looks ahead to future directions. We briefly

discuss an upcoming experiment in our lab to generate a three-node GHZ state

using photonic links, which would be a step towards building small quantum

2



networks. We also consider other possible approaches to improve the fidelity

and rate of remote entanglement, with the goal of developing better photonic

connections for scalable, networked quantum computing.

3



2

Introduction

The theory of computation, due to the foundational work of Alan Turing and

Alonzo Church, has traditionally been built on deterministic and discrete logic [2, 3].

A bit, the fundamental unit of information, exists in one of two definite states: 0 or

1. Classical computing has powered a technological revolution, leading to supercom-

puters of today that can perform trillions of operations per second. Interestingly, the

underlying transistors that power these computers are based on quantum mechanical

effects [4].

Whereas classical mechanics and conventional intuition are, in some sense, based on

the notion of deterministic evolution, the laws of quantum mechanics are described by

the precise evolution of probabilities. Quantum mechanics allows, somewhat nonin-

tuitive phenomena such as superposition, interference, and entanglement [5, 6]. This

leads to the question: Could a new type of computation, one that directly harnesses

these quantum phenomena, solve problems which are otherwise intractable?

The most influential early proposal came from the physicist Richard Feynman.

In a seminal 1982 paper, "Simulating Physics with Computers," Feynman observed

that simulating a quantum system with a classical computer appeared to be an

exponentially difficult task [7]. The number of variables required to describe a system

of N interacting quantum particles grows as 2N , a computational cost that quickly

becomes prohibitive. He argued that to simulate a quantum system efficiently, one

should build a computer that itself operates on quantum mechanical principles.
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Independently and slightly earlier, in 1980, the mathematician Yuri Manin had

outlined a similar idea in his book “Computable and Uncomputable” [8]. Manin

was one of the first to suggest the use of quantum systems for computation and to

speculate on their potential advantages over classical machines. Both Manin and

Feynman independently came to the conclusion that as quantum systems grow in

size, they quickly become intractable under classical simulation techniques. The

concept of a quantum computer did not emerge from a single breakthrough but was

a gradual realization by physicists.

In the early 1980s, these ideas began to solidify into a concrete theory of quantum

computation over the following decade. In 1985, David Deutsch at the University of

Oxford published a pivotal paper that formally defined a universal quantum com-

puter, or a "quantum Turing machine" [9]. He proved that such a machine could

efficiently simulate any other physical system, thereby establishing the theoretical

bedrock for the entire field. The field of quantum computing gained a lot of interest

in 1994. Peter Shor, from Bell Labs, had developed a quantum algorithm capable

of finding the prime factors of a large integer exponentially faster than any known

classical algorithm [10]. The security of modern cryptography, including the widely

used RSA encryption standard, relies on the classical difficulty of this exact prob-

lem. Shor’s algorithm demonstrated that a functional quantum computer could, in

principle, break much of the world’s current digital security infrastructure.

This was the first “killer application” for a quantum computer. The focus of

the field rapidly shifted from purely theoretical explorations to experiments: how

could one actually build such a device? One step towards this came in 1995 when

Ignacio Cirac and Peter Zoller proposed a physical implementation. Their scheme

detailed how a set of trapped ions, cooled to near absolute zero and manipulated

by lasers, could realize a fundamental two-qubit quantum logic gate (the controlled-

NOT gate) [11]. Immediately following this, David Wineland and Chris Monroe from

5



NIST demonstrated the first implementation of a two-qubit gate based on trapped

ions [12].

Since then, a variety of platforms have been demonstrated as suitable for quan-

tum computing. This includes the phase, charge, flux, or some combination of them

in superconducting circuits [13, 14], spin states of neutral atoms held in optical

tweezers [15–17], spin states in quantum dots [18–20], photonic states in an in-

tegrated photonic chip [21, 22], anyonic excitations in topological states of matter

[23], and of course electronic spin states of trapped atomic ions [24, 25].

2.1 Applications and the Promise of Quantum Advantage

Quantum computing may provide “quantum advantage” i.e. speedup over clas-

sical computers for certain classes of problems. These problems are typically those

whose complexity scales exponentially with size, rendering them intractable for clas-

sical machines. Before we look at some use cases, we quickly go over how a qubit

and operations on it are defined.

2.1.1 The Qubit

In quantum computing, the classical bit is replaced by the quantum bit, or qubit.

A qubit is a two-level quantum mechanical system which can exist in a superposition

of both the two states or levels [26]. We can represent the state of a qubit |ψy using

Dirac notation:

|ψy “ α|0y ` β|1y

Here, |0y and |1y are the basis states (analogous to classical 0 and 1), and α and β

are complex numbers called probability amplitudes. The condition |α|2 ` |β|2 “ 1

must be met, where |α|2 is the probability of finding the qubit in the state |0y upon

measurement, and |β|2 is the probability of finding it in the state |1y. One can also

represent the qubit as a point on a unit complex sphere 2.1. A pure, normalized
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Figure 2.1: Bloch sphere representation of a single qubit. A general qubit state
can be written as |ψy “ cospθ{2q |0y ` eiϕ sinpθ{2q |1y, corresponding to a point on
the unit sphere. The north and south poles represent the computational basis
states |0y and |1y, respectively, while the equator consists of equal superpositions
with varying phase.

state of the qubit can then be parameterized by two angles denoting the point. We

can write

|ψy “ cospθ{2q |0y ` eiϕ sinpθ{2q |1y

In an ideal quantum computer, the state angles θ and ϕ evolve predictably under

applied quantum gates (see next section), allowing us to track them precisely. Loss

of this predictability leads to decoherence, which we quantify by the qubit’s T1 and

T2 times—the timescales over which θ and ϕ remain reliable, respectively. Quan-

tum algorithms then manipulate these angles across many qubits, using interference

of their complex amplitudes to maximize the probability of obtaining the desired

outcome. Finally, projective measurements collapse each qubit into one of its basis

states, destroying its superposition.
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2.1.2 Quantum Gates

Quantum algorithms are implemented by applying a sequence of quantum gates

to one or more qubits [26]. They can operate on any number of qubits; however, the

frequently used ones are single and two-qubit gates.

• Single-Qubit Gates: These manipulate the state of a single qubit, which can

be visualized as rotations on the surface of a Bloch sphere. Examples include

the X-gate (a bit-flip), the Z-gate (a phase-flip), and the Hadamard (H) gate.

• Two-Qubit Gates: To perform useful computation, qubits must interact. This

is achieved through two-qubit gates, which can create entanglement across

qubits. An entangled state is one where the quantum state of each qubit is not

seperable as a tensor product of each states in their own Hilbert space. The

most common two-qubit gate is the Controlled-NOT (CNOT) gate. It flips the

state of a target qubit if and only if a control qubit is in the state |1y.

A universal set of quantum gates (e.g., arbitrary rotations on the Bloch sphere plus

the CNOT gate) is sufficient to construct any possible quantum algorithm.

2.1.3 Quantum Simulation

Returning to Feynman’s original motivation, quantum simulation remains one

of the most promising applications. Quantum simulation is emerging as a crucial

approach for tackling complex quantum many-body problems in quantum chemistry,

condensed matter physics, and high-energy physics. Analog quantum simulators (e.g.

ultracold atoms in optical lattices, trapped ions, Rydberg atom arrays) currently

achieve hundreds of qubits with specific Hamiltonians [27–30], while digital gate-

based quantum computers offer universal programmability on tens to low-hundreds

of qubits [31–33].

• Quantum chemistry simulation: Current quantum computers are limited in

size and noise. So far, only small molecules have been simulated on quantum
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hardware; for example, proof-of-concept studies have computed the ground-

state energies of H2, LiH, BeH2 and H2O in minimal basis sets [34]. The

resource demands for useful chemistry simulations are formidable. For instance,

obtaining the exact ground-state energy of the FeMoco enzyme active site (for

nitrogen fixation and a benchmark problem beyond classical computing) has

been estimated to require on the order of 900 logical qubits with „105 single

qubit rotations and a cricuit depth of „103 [35]. In practice, depending upon

the error correction code, this can translate to hundreds of thousands of qubits

with physical error rates ă10´3.

• Condensed matter physics simulations:Quantum simulation of strongly corre-

lated quantum materials and models is another promising domain – and one

where quantum advantage may emerge sooner. Rydberg-atom arrays have re-

alized 2D spin-1/2 Ising models with up to 256 atoms [36], allowing studies of

different phase transitions. A plethora of experiments using both analog and

digital simulators, have already been used to study condensed matter phenom-

ena [31, 32]. The resource requirements for quantum advantage problems (2d

Fermi-Hubbard models for superconductivity), are arguably the lowest among

all classes of problems a quantum computer can attack, but still require several

hundred thousand qubits (assuming a surface code) with 10´3 error rates [37].

• Fundamental Physics: There are ongoing experiments about simulating differ-

ent aspects of high-energy physics, for example, scattering phenomena, string

breaking, quenching etc [29, 38, 39]. Interestingly, it may be possible to show

quantum advantage in terms of specific calculations of quantum dynamics with

a 100s of qubits and reasonable error rates (several thousand two qubit gates,

error „10´4) [38].
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2.1.4 Quantum Algorithms

Beyond quantum simulation, a suite of quantum algorithms has been developed

that offer significant speedups. The most prominent among all of them, till date, is

Shor’s algorithm.

• Shor’s Algorithm: Indisputablely, this has the most impact in the real world,

and also shows quantum advantage very clearly. To factor an N bit integer a

quantum computer would take OpN3q gates with 5N ` 1 qubits [40], assuming

perfect qubits with error free gates. Current state of the art resource estimates

say that to factor a 2048-bit RSA integer, it would require less than a mil-

lion noisy qubits, assuming an error rate of 10´3 in a superconducing qubit

archictecture running surface code [41], or 19 million qubits for a neutral atom

system with similar error rates and surface code error correction scheme [42].

From the above numbers, it is very clear that we will need to have qubits at least

on the order of ą106, with physical error rates of 10´3 or better. Current state of

the art quantum computers have qubit counts in the (100s-1000s), with error rates

of 10´3 [42–44]. Clearly, there is a big gap, and we need to scale up these quantum

systems by several orders of magnitudes.

Several physical platforms are being pursued to have a scalable architecture, in-

cluding superconducting circuits, trapped atomic ions, neutral atoms, silicon quan-

tum dots, and photons.

2.2 A Proposed Path Forward: Scaling with Atoms and Photons

To bridge the gap between current day devices and fault-tolerant quantum com-

puters (>1000 logical qubits), a leading strategy is to pursue a modular architec-

ture. The idea is to build a large-scale processor by networking many smaller, high-

performance quantum modules together. This approach breaks down a monolithic

engineering challenge into a more manageable one, allowing individual modules to
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be built, characterized, and replaced independently. In the case of trapped atomic

ions, each module may contain hundreds to thousands of qubits shuttled between

multiple zones [25, 45].

The ideal carrier for transmitting quantum information between these modules is

the photon. Photons travel at the speed of light, interact weakly with the environ-

ment (making them robust against decoherence during transit), and can be routed

using existing fiber-optic technologies. Therefore, the development of high-fidelity

and fast photonic interconnects between good quantum memories is crucial for large-

scale modular quantum computers and networks [46]. Such photonic interconnects

collect photons from different qubits and interfere them in an entanglement-swapping

procedure [47] that leaves these qubits entangled [48–50].

This thesis focuses on the platform that is best suited to interface with these pho-

tonic interconnects: trapped atoms/ions [1, 51–53]. Atomic systems are promising

candidates for quantum computing nodes for several reasons:

• Identical Qubits: Every atom of a given isotope is a perfect, identical qubit,

eliminating manufacturing variations.

• Long Coherence Times: Atoms in a vacuum are well isolated from environmen-

tal noise, leading to some of the longest coherence times of any platform.

• Natural Light-Matter Interface: Most importantly, atoms possess strong natu-

ral electronic transitions that allow them to efficiently emit and absorb single

photons. This provides a built-in high-fidelity mechanism for converting the

stationary qubit state within an atomic module into a “flying” photonic qubit

for communication.

By combining the stability and coherence of atomic qubits with the speed and

robustness of photons, a modular architecture offers a scalable path toward building

a utility-scale quantum computer. The research presented in this thesis aims to

address key challenges in the development of such atom-photon interfaces, which
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will play a critical role in scaling up quantum computers.
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3

The Qubit: Ions

Atoms, once they are isolated from their environment, are ideal qubits, since

in quantum mechanics, they are indistinguishable. If someone prepares two atoms

in the exact same quantum state, then no measurement that the laws of physics

permit can reveal which atom is which. Exchanging the particles only multiplies

the many-body wavefunction by an overall phase. That uniformity makes atomic

hardware fundamentally different from solid-state qubits, whose Josephson junction

areas [54], barrier thicknesses [55], or color-center strain’s drift from device to de-

vice [56, 57] must be individually characterized and taken into consideration while

operating them.

We quickly look back at the developments in quantum mechanics that postu-

late atoms to be indistinguishable. John Dalton, in the early nineteenth century,

stated that matter is built from discrete, indivisible particles that combine in fixed

ratios [58]. Although J. J. Thomson’s 1897 discovery of the electron [59] and Ernest

Rutherford’s 1911 discovery of the nucleus [60] did not go well with Dalton’s indivis-

ible atoms, they produced a classical paradox: a charged electron orbiting a nucleus

will radiate energy, and fall into the nucleus. Niels Bohr fixed the atomic stability

problem by postulating quantized orbits [61], Max Planck explained the black-body

spectra [62] and Einstein’s photoelectric-effect implied that light can be thought of

as particles [63]. Louis de Broglie extended quantization to matter waves [64]; Er-

win Schrödinger and Werner Heisenberg then supplied wave mechanics and matrix
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mechanics, completing the first quantum revolution [65, 66]. In the 1950s, quantum

electrodynamics, the weak interaction theory, and quantum chromodynamics com-

bined into the Standard Model, demonstrating that atoms are actually divisible and

made of quarks, leptons, and gauge bosons whose properties depend only on their

quantum numbers [67–71]. Consequently, any two atoms of the same isotope (made

up in the same way from leptons, quarks and gluons), in identical electronic and

motional states, are governed by identical Hamiltonians and respond identically to

external control fields.

However, to get to a working quantum computer, we must localize, cool, and ad-

dress individual atoms with precision. For charged particles, Wolfgang Paul and Hans

Dehmelt devised the radio-frequency quadrupole trap—the four-rod “Paul trap” or

quadrupole mass filter—for which they shared one-half of the 1989 Nobel Prize in

Physics [72]. A single ion can be confined for days, with megahertz motional fre-

quencies, and ion escape rates low enough to permit thousands of logic operations

between re-cooling cycles. Neutral atoms can be held in optical potentials created ei-

ther by crossed laser beams that form three-dimensional optical lattices or by tightly

focused beams that act as optical tweezers, pioneered by Arthur Ashkin, Steven Chu,

William D. Phillips, and many others [73, 74]. Both atoms and ions can be cooled

via various laser cooling techniques [75–77].

In both platforms, narrow-linewidth lasers and microwaves initialize internal

states, engineer spin-dependent interactions via state-dependent forces or Rydeberg

interactions or phase shifts from cold collisions, and drive Raman or direct transi-

tions that realize single-qubit rotations with errors well below one part in 104 [78,

79]. Multiqubit entanglement arises via shared phonon modes in ions or Rydberg-

mediated dipole interactions in neutrals, with two qubit entanglement fidelities ex-

ceeding 99.5% [80, 81]. Because every qubit is the same and of pristine quality, the

workload for scaling a quantum computer, transfers to the control system. Studies
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have already shown ways to control a large array of qubits [82, 83]. Moreover, the

identical optical transitions that simplify local gates also standardize remote links:

photons emitted from independent ions are automatically frequency matched, en-

abling high-visibility two-photon interference for heralded entanglement across me-

ters or, with cavities and frequency conversion, across kilometers of fiber [1, 53,

84, 85]. The ability to copy-and-paste control recipes across an array of modu-

larly connected qubits while using the same stabilized laser frequencies, microwave

tones, and error-mitigation protocols makes atoms the right choice for making fault-

tolerant quantum computers. This chapter examines the specific level structures,

clock transitions, and metastable manifolds of the atomic ion species central to this

thesis—171Yb` and 138Ba`, and explains how their native properties align with the

demands of scalable quantum logic and photonic networking. Subsequent chapters

delve into the mechanics of trapping, cooling, coherent manipulation, and intercon-

nects that translate such perfect atoms into operational qubits.

3.1 Atoms as good qubits

Now we go into details about why an atom is a good qubit. An ideal qubit should

have the following characteristics:

1. Identical to each other.

2. Long quantum information storage time.

3. Predictable qubit state evolution.

4. High quality and fast quantum state preparation.

5. Easy qubit state discrimination and measurement.

6. Easy, fast and high quality single and two qubit gates.

Atomic systems satisfy these key characteristics for scalable quantum hardware

almost by construction. First, atoms of the same isotope are quantum-mechanically

indistinguishable: once loaded into a Paul trap or optical tweezer, each qubit experi-
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ences almost the same internal Hamiltonian, so device variability is negligible. Sec-

ond, the qubit can be stored in a pair of hyperfine “clock” states whose energy split-

ting is first-order insensitive to magnetic-field noise, resulting in minutes of coherence

times which can be pushed to hours with magnetic shielding and dynamical decou-

pling [86]. Third, because the environment is an ultra-high-vacuum chamber (min-

imizing interactions with the environment) with actively stabilized radio-frequency

(resulting in predictable motional evolution) and laser fields, phase evolution follows

the lab clock predictably, enabling precise qubit phase tracking [87]. Fourth, optical

pumping prepares the ion in a well-defined electronic ground state with ą 99.9% fi-

delity in a few microseconds, and laser/microwave pulses or stimulated-Raman trans-

fers create arbitrary superpositions just as quickly. Fifth, the same cycling transition

used for Doppler cooling can provide state-dependent fluorescence. In a 100–1000 µs

detection window the |0y state scatters thousands of photons while the |1y state, ei-

ther due to being shelved to a long-lived metastable state or being spectrally distant

from the detection light, remains nearly silent, allowing single-shot discrimination

fidelities above 99.9 % [79, 88]. Single-qubit gates driven by resonant microwaves or

narrow-band Raman beams achieve error rates below 10´6 in „10 µs [78]. Two-qubit

entangling gates exploiting geometric phases which are mediated either by Rydberg

or Coulomb interactions can now routinely deliver Bell-state fidelities above 99.5%

in 20–1000 µs [80]. Together, these attributes make trapped ions a clean and ver-

satile platform that offers identical qubits, long-lived memories, deterministic state

control, high-contrast readout, and fast, high-quality logic operations.

Typically, the trapped ion community uses Group 2 and 2b elements by singly

ionizing them. Such an element, after losing an electron, has only a single electron

in its S valence shell.
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Table 3.1: S to P transition wavelengths for all Group II atomic ions.
138Ba` has the longest wavelength among all of them, making it suitable for
quantum communication since longer wavelengths have lower fiber attenuation.
Data taken from the NIST atomic spectra database [89].

Species S Ø P wavelength (nm)
9Be` 313

24Mg` 280
40Ca` 397
88Sr` 422

138Ba` 493
226Ra` 468
171Yb` 370

3.1.1 The barium qubit

As seen in Table 3.1, barium-138 has the longest wavelength S1{2 to P1{2 transition

among the Group 2 elements. This is good since visible lasers are easier to maintain

and operate than ultraviolet ones. Moreover, longer wavelengths have lower attenua-

tion rates in fiber, can be used with integrated photonics, and can be detected with a

greater quantum efficiency. These make barium a good choice for quantum commu-

nication. The level structure of singly-ionized barium is shown in Fig. 3.2. The term

symbols which characterize the angular momentum state of the atom are written as
2S`1LJ, where S is spin angular momentum, L is the orbital angular momentum, and

J is the total angular momentum given as |L ´ S| ă J ă |L ` S|. Note that these

are the momentum states of the single electron bound to the atomic barium nuclei.

Since this is the even isotope of barium, it does not have a nuclear spin (I = 0)

and hence the total spin angular momentum of the system S “ 1
2 . For the ground

state manifold we will have S “ 1
2 ,L “ 0, J “ 1

2 . The spin multiplicity of the ground

state is 2s ` 1 “ 2, meaning that under the application of a magnetic field, it splits

into two states with good quantum numbers given as |J,mJy “ |1
2 ,˘

1
2y. The energy
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Figure 3.1: Periodic table highlighting the atoms which are typically
used in trapped ion experiments. The blue colors represent alkali-like ions and
the orange colors represent alkaline-earth like ions. Adapted from the Duke Ion
Trapping website [90].

splitting between these two states is given by

∆E “ ∆mJµBgJB (3.1)

where

gJ “ 1 `
JpJ ` 1q ´ LpL ` 1q ` SpS ` 1q

2JpJ ` 1q
“ 2 (3.2)

and µB “ 9.27 ˆ 10´28J{G is the Bohr Magneton. With these, we get a magnetic

field splitting of 2.8 MHz/G between the two states in the ground state. All the

other splittings and angular momentum numbers are given in Table 3.2 (assuming
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∆mJ “ 1).

Table 3.2: Zeeman splittings for different angular momentum states of
barium. gJ is calculated from Eqn. 3.2, and the angular momentum quantum
numbers are retrieved from the term symbols. Zeeman splittings are calculated
from Eqn. 3.1

Levels J L S gJ Zeeman splitting MHz/G
2S1{2 1/2 0 1/2 2.00 2.799
2P1{2 1/2 1 1/2 0.67 0.933
2P3{2 3/2 1 1/2 1.33 1.866
2D3{2 3/2 2 1/2 0.80 1.119
2D5{2 5/2 2 1/2 1.20 1.679

The ground state couples to the excited 2P1{2 state via a 493 nm dipole transition.

This state has a lifetime of 7.9 ns, decaying to both the S level and a low lying D

(J=3/2) level via dipole coupling [91]. To pump out of the D3{2 levels, one needs to

use 650 nm light. There also exists a long-lived D level (J=5/2, τ “ 30s) which can

be used as a metastable state for various purposes, as will be explained in the rest

of the thesis. The level diagram of such a barium ion is given in Figure 3.2.

19



6 2S1/2

6 2P1/2

493 nm

-1/2 +1/2

455 nm

6 2P3/2

-1/2 +1/2

5 2D3/2

5 2D5/2

1762 nm

43 THz

532 nm

650 nm

0.93 MHz/G

2.8 MHz/G

t = 81 s

t = 30 st = 7.9 ns

t = 6.3 ns

614 nm

Figure 3.2: Energy level diagram of 138Ba`: Relevant energy levels which
shows typical requirements in terms of laser wavelengths, to trap and use this atom
as a qubit. The Zeeman splitting is only shown for the levels of S1{2 and P1{2, such
states are labeled as ˘1{2. t represents the lifetimes of each of these levels. The
arrows show the respective transition frequencies, with their colors chosen
approximately to depict what they look like. 493 nm, 455 nm, 650 nm and 614 nm
drive dipole transitions; 1762 nm drives a quadrupole transition. 532 nm light
which is very far detuned from the P1{2, are used for driving Raman transitions.
The wavelengths and lifetimes have been sourced from [89], [91] and [92]

The transition between 2S1{2 and 2D5{2 is a 1762 nm quadrupole transition with

a linewidth of 6.1 mHz. The 2D5{2 level can be cleared out since this state couples

in a dipolar fashion to 2P3{2.
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3.1.2 The ytterbium qubit

The 171Yb` ion is an appealing platform because it is a naturally abundant, stable

isotope with a nuclear spin of I“ 1
2 . This nuclear spin I“ 1

2 now gets added to the

total angular momentum compared to barium-138 from before, F = I+J resulting in

hyperfine split states corresponding to different F numbers for a given term symbol

JL`S. For example, in 171Yb`the ground S1{2 levels are split into two hyperfine levels

corresponding to F=0 and F=1, each of which is further split into Zeeman levels

based on the projection of F into the quantization axis. Its primary Doppler–cooling

transition, 2S1{2 Ø 2P1{2, occurs at 369 nm—in the ultraviolet and accessible with

commercial diode-laser systems and transmissible through optical fibers over short

distances. Coherent qubit rotations are typically implemented with Raman beams

near 355 nm. As illustrated in Fig. 3.3, the qubit is encoded in the magnetic-field-

insensitive “clock” states of the 2S1{2 ground manifold,

|0y ” |F “ 0, mF “ 0y , |1y ” |F “ 1, mF “ 0y .

Since these states have mF “ 0, they enjoy long coherence times [93]. To keep the

electron in the S1{2 and P1{2 levels, it is also required to use a repumping light. In the

the first laser cooling implementation of Yb`, a 2.4 µm transition [94] was used for

repumping. However, nowadays it is common to use 935 nm light for repumping [95].

21



2S1/2

2P1/2
F=1

F=1
F=0

F=0

2P3/2

2.1 GHz

12.6 GHz + 310.8 B2 Hz

t = 8.1 ns

1.4 MHz/G

2D3/2

F=2

F=1
0.86 GHz

3[3/2]1/2
F=0

F=1
2.2 GHz

t = 52.7 ms

36
9.

52
62

 n
m

93
5.

18
79

 n
m

2.438 um

29
7.

1 
nm

35
5 

nm

33 THz

98.2% 1.8%
t = 37.7 ns

467 nm
435.5 nm

67 THz

32
9 

nm

Figure 3.3: Energy level diagram of 171Yb`. We only show the levels that we
use in our experiment. 171Yb`is has a nuclear spin of one-half resulting in hyperfine
splitting of the energy levels, which is typically in the GHz frequency range. 99.5%
of light decays to the S1{2 manifold after decaying from P1{2, the remaining decay
to the D3{2 manifold is cleared out using 935 nm light. Doppler cooling is done on
the 369 nm line, while qubit rotations between |0y ” |S1{2, F “ 0y and
|1y ” |S1{2, F “ 1,mF “ 0y is driven by Raman transitions with pulsed 355 nm
light. Microwaves have also been used for the same. t denotes the lifetimes of the
state. The displayed wavelengths, branching ratios and lifetimes have been sourced
from [96], [89] and [97]

3.1.3 Possible encoding of states in an ion

Given the rich structure of the atomic ions, there are various ways to encode a

qubit. The most obvious choice is to encode them in the Zeeman states of the ground

S manifold [98]. The splitting between such states is on the order of several MHz

and such transitions are easy to address using either a radio-frequency antenna or
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a two-photon Raman process with the frequency difference between the two arms

calibrated as the qubit frequency difference [99]. For atoms with a nuclear spin in

stable, odd mass-number isotopes, there also exist hyperfine levels in the ground

manifolds, which are typically split in the GHz frequency range. They are extremely

good as memory qubits due to the long coherence times, which come from their

first-order magnetic field insensitivity [100].

One can also store the qubits in two different manifolds, with a quadrupole cou-

pling to ensure a long T1 time for the qubit. For example, a specific Zeeman level in
2S1{2 and another specific Zeeman level in 2D5{2 can serve as the two basis states [101].

In this case, the energy splitting between the two would be an optical frequency dif-

ference spanning hundreds of THz. Driving transitions between such states would

be possible by a narrow linewidth laser to keep track of the phase precisely. Such

optical qubits are usually more difficult to control due to the need to obtain and lock

a narrow linewidth laser to a high finesse cavity.

The third option would be to store qubits in a metastable state, for example

the D manifold. The qubit states would still be Zeeman states (or hyperfine states

depending on the nuclear spin), the only difference is that the qubits would need

to be initialized to the metastable state via an optical transition, and then coherent

operations can be performed either by radio-frequency fields or two-photon Raman

transitions. These three schemes are what are known as the omg (optical, metastable

and ground) architecture for encoding qubits [102].

3.2 Photonic qubit

A photon is a quantized excitation of the electromagnetic field: a mass-less,

spin-1 boson that always propagates at the speed of light in vacuum, carries an

angular-momentum projection of ˘ℏ along its direction of motion, and couples to

charged matter through the elementary electric charge. Because it lacks rest mass
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Figure 3.4: Wavelength dependence of fiber attenuation: Unless there are
any absorption peaks at a given wavelength, the fiber attenuation usually goes
down with increasing wavelength. At 493 nm, the attenuation is 30 dB/km. Over
10 meters, this corresponds to a 7% loss in transmitted power.

and interacts only via weak electric–dipole couplings, a single photon is remarkably

resistant to environmental perturbations. These properties hint at why light can be a

good qubit. Photons can manifest themselves as a variety of orthogonal solutions of

Maxwell’s equations which may be distinguished by polarization, spatial profile, ar-

rival time, or frequency. A two-dimensional sub-space of any of these modes can then

define a photonic qubit. In single-rail encoding the occupation number of one mode

represents |0y (vacuum) or |1y (one photon) [103]. In dual-rail encoding the presence

of a single photon in either of two orthogonal modes (e.g. horizontal, |1H0V y, or

vertical, |0H1V y, polarization) spans the qubit [104]. Polarizing beam splitters along

with wave plates and retarders can distinguish these basis states with very low error

probabilities, below 10´5.
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Photons also have no intrinsic relaxation time. Initializing a register to |0y
bn is as

simple as leaving the optical modes empty; putting a heralded single photon in a

chosen mode defines |1y.

Because photons interact weakly with both the environment and one another, de-

coherence is dominated by classical channel imperfections such as fiber attenuation

(„ 0.2 dB km´1 at 1550 nm), chromatic dispersion, and thermally driven phase drift.

Even so, kilometer- scale coherence lengths are routine, and the absence of pho-

ton–photon coupling eliminates correlated noise between neighboring qubits. Any

single-qubit unitary U P SUp2q decomposes into a few beam-splitters and phase

shifters [104]. Two-qubit gates are harder. Optical Kerr nonlinearities are cur-

rently too weak and lossy for fault-tolerant thresholds, so photonic platforms rely

on linear-optical, measurement-based schemes (KLM, fusion, parity checks) which

are probabilistic in nature [22, 104]. State read-out of photonic qubits is easy due

to the high quantum efficiency of superconducting nanowire single photon detectors

and avalanche photo-diodes. All of these suggest why photons can serve as a good

qubit [105]. However, the same weak interaction that preserves coherence hampers

deterministic two-qubit logic and fiber loss limits passive storage to microsecond

delay lines [106]. Current optical memories in atomic ensembles or cavity-coupled

emitters add complexity and are not yet universal or error-corrected [107]. Conse-

quently, most scalable quantum computing platforms pair stationary matter qubits

(for computation and storage) with photonic “flying” qubits (for communication),

exploiting each platform’s comparative advantages while respecting its limitations.

Room-temperature operation, negligible dephasing in flight, and compatibility with

existing fiber networks allow photons to distribute entanglement over metropolitan

or even satellite-to-ground links [108, 109]. In modular architectures, they shut-

tle quantum states between trapped-ion, neutral-atom, or superconducting memory

qubits [1, 53, 85, 110]. For quantum networking purposes, they have already been

25



leading the way from early on when the first quantum key distribution schemes like

BB84 were based on polarized photons [111].

3.2.1 Possible encoding of states in a photon

As stated earlier, there are various possible ways to encode quantum states in

a photon. Usually, single or dual rail encoding schemes use different modes of the

photons to encode the information in. For example, in the dual rail encoding scheme,

one can use two orthogonal polarizations to encode two quantum states:

|0y “ |1yH b |0yV (3.3)

|1y “ |0yH b |1yV (3.4)

Polarization is especially easy to control via passive birefringent devices, thereby

constituting a popular choice. Another option would be to use two distinct fre-

quencies of these photons. They can be controlled by the use of active electro-optic

devices [112]. Unlike polarization, which can get scrambled when traveling over long

distances, the frequency of a photon is comparatively robust when traveling longer

distances. Orbital angular momentum (OAM) can also act as a carrier of quantum

information [113]. It is manipulated with phase plates that imprint a helical phase

onto the beam’s transverse profile: the resulting azimuthal phase variation breaks

cylindrical symmetry, so the orbital contribution

L “ r ˆ p

becomes nonzero. For classical light, the momentum density dp{dV , is given by

pE⃗ ˆ B⃗q{c2. A mode carrying a single quantum of total angular momentum merely

rotates about its propagation axis and contains only spin angular momentum (SAM),

not OAM. Genuine OAM arises in higher-order modes, i.e. when ∆m ě 2.

Photon arrival times provide another encoding option. In time-bin qubits, the

qubit states correspond to distinct temporal windows, typically generated with an
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unbalanced interferometer or through successive excitations of a single photon emit-

ter [114]. Time-bin states propagate over long distances with high robustness, but

their analysis can require path-stabilized delay interferometers.
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4

Qubit Confinement: Ion Trapping

To be able to use atoms as qubits, the first step is to localize them in space to ease

the control requirements of the electromagnetic fields interacting with them. One

can imagine having a lattice of atoms fixed in space and using directed laser fields

interacting on an individual level with the atoms to coherently control them. Indeed,

this has become one of the prominent ways to make a large qubit array quantum

computer: by making a grid of focused laser beams to trap atoms which are called

optical tweezers [115–117].

One can also ionize an atom and use its charge as a degree of freedom to ex-

ert a confining force via electric fields. However, in free space, Gauss’s law states

∇ ¨ E “ 0, which physically means that free particles cannot be maintained in a stable

equilibrium configuration by inverse square forces. This is also known as Earnshaw’s

theorem [118]. Intuitively, one can understand this as follows. Since the field is

divergenceless, there are no points in space where all the electric field vectors face

inward, which is essential for confinement. If there are electric field vectors pointing

inward along a specific direction, there are necessarily other directions where the

field directs outward. However, a dynamic potential with specific geometries can

generate a time-averaged trapping force. The first implementation of this was by

Wolfgang Paul and his discovery of the Paul trap, for which he was awarded a share

of the Nobel Prize in 1989 [119, 120]. Since the introduction of radio-frequency Paul

traps, they have found an enormous number of use cases in atomic clocks, mass and
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Figure 4.1: Oscillating Paul trap potential: The potential in arbitrary
voltage units (A.U.) are plotted as a function of position at two different times.
The left figure shows the potential due to the four rods which is confining in the y
direction and anti-confining along the x direction. However, within half a cycle of
the supplied radio-frequency on the rods, this orientation flips.

frequency spectroscopies, quantum computing, etc. [121, 122] Now, there exists a

variety of ion trap geometries and a nice collection of them exists on the Maciej

Malinowski website [123].

To motivate the geometry of a Paul trap, we start with a general parabolic

potential that we wish to trap ions in. We can write such a field upto a constant C

as [124]:

Uprq “
V0

2r2
0

pαx2
` βy2

` γz2
q ` C (4.1)

But we know that ∇ ¨ E “ 0 ùñ ∇2U “ 0 ùñ α ` β ` γ “ 0. This can be

satisfied in different ways. Let us focus on the case where α “ ´β and γ “ 0. The

desired potential, up to some constant factor, then becomes:

Uprq “
V0

2r2
0

px2
´ y2

q ` C (4.2)

However, it is still clear that the force for this is confining in the x direction and

anti-confining in the y direction. This suggests that we should apply an oscillating
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Figure 4.2: Electrode configuration for ion trapping: The left figure shows
what an ideal hyperbolic configuration would look like. The right figure shows how
a 4-rod Paul trap looks like in the experiments that we have. The four cylindrical
rods provide radial confinement only. We use two cylindrical pointed needles along
the axis with a static voltage for axial confinement. The atomic ions which get
trapped in the center of the needles, are made to line up axially by making the
axial confinement the weakest and the radial confinement non-degenerate in their
frequencies.

field that rapidly switches directions. This potential can be generated by hyperbolic

electrodes, as is evident from the hyperbolic potential. Suppose we switch their

polarity at a very high frequency (>10 MHz). In such a case, the total potential

would look like:

Uprq “
V0

2 cospΩT tq

ˆ

1 `
x2 ´ y2

r2
0

˙

(4.3)

This does not generate any field along the z direction. For that purpose, we can put

a pair of end-caps held at a fixed potential at each end in the z direction. This would

create confinement in the z direction and anti-confinement in the x-y plane.

Ucap “
U0

z2
0

ˆ

z2
´
x2 ` y2

2

˙

(4.4)

For ideal hyperbolic electrodes with perfect point end caps, one can expect to get a

sum of the potentials Uprq `Ucap. However, since we need to collect light from these
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trapped ions and we need to send laser light at the ions, we would like to have high

optical access. We can make our trap out of 4 cylindrical rods, two of which we drive

with radio frequency signals, the other two we hold at a fixed potential. Finally, two

coaxial needles come in along the z direction on either side of the ion. Now, this

gives us the final potential that will be confining.

Vtot “
V0

2 cospΩT tq

ˆ

1 `
x2 ´ y2

r2
0

˙

`
U0

z2
0

ˆ

z2
´
x2 ` y2

2

˙

(4.5)

The corresponding field from this potential is E “ ´∇Vtot

E “ ´V0cospΩT tq

ˆ

xx̂ ´ yŷ

r2
0

˙

´
U0

z2
0

p2zẑ ´ xx̂ ´ yŷq (4.6)

Naively, if we time-average this force on a positively charged ion, for U0 ą 0, we will

get a net inward force only along the z direction and an outward force in the x,y

plane. However, for a second let us imagine the atomic motion due to an effective

trapping potential and an oscillating driving force.

xptq “ xtrapptq ` xdriveptq (4.7)

Here, the drive at cospΩT tq causes the atom to wiggle around at the same frequency

with some phase lag. If one now averages over the path that the ions follow, one will

get an extra cosine term leading to a cosine-squared term and an averaged non-zero

inward force. For an ion with mass m and charge Q, we can write the differential

equations as follows:

:x “ ´
Q

m

ˆ

V0

r2
0

cospΩT tqx ´
U0

z2
0
x

˙

(4.8)

:y “
Q

m

ˆ

V0

r2
0

cospΩT tqy `
U0

z2
0
y

˙

(4.9)

:z “ ´2Q
m

U0

z2
0
z (4.10)
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The equation in the z direction is harmonic in nature with a frequency ωz “

b

2QU0
mz2

0
. We can rescale Eqn. 4.10 in terms of an unitless parameter τ “ Ωt{2 to

obtain equations of the form

d2x

dτ 2 “ ´
4Q

Ω2
Tm

ˆ

V0

r2
0

cosp2τq ´
U0

z2
0

˙

x (4.11)

d2y

dτ 2 “ `
4Q

Ω2
Tm

ˆ

V0

r2
0

cosp2τq `
U0

z2
0

˙

y (4.12)

d2z

dτ 2 “ ´
8Q

Ω2
Tm

U0

z2
0
z (4.13)

The equations in the x,y plane are similar in form to Mathieu equations, which look

like the following:

d2x

dζ2 ` p2qcosp2ζq ` aqx “ 0 (4.14)

By comparison, we get the following expressions for a and q:

qx “
2QV0

mΩ2
T r

2
0

ax “ ´
4QU0

mΩ2
T z

2
0

(4.15)

qy “ ´
2QV0

mΩ2
T r

2
0

ay “ ´
4QU0

mΩ2
T z

2
0

(4.16)

We can rearrange to see qx,y “ ˘
2QV0

r2
0

1
mΩ2

T
which shows that it is a ratio of how

strongly the RF field curves compared to the ion’s resistance to move when shaken

at a frequency Ω. The Mathieu q parameter is basically the modulation depth of

the spring constant that the ion feels from the RF drive. It tells us how strong

the oscillating quadrupole “push” is compared to the ion’s inertia at the RF drive

frequency. A small q means that the RF is fast/weak enough that the ion mainly feels

a time-averaged pseudopotential, and a large q means the RF push is strong/slow

enough to cause big micromotion and, eventually, parametric instability. Under the

condition p|ai|, q
2
i q ăă 1, and to the first order, one can solve these equations to
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obtain the ion trajectory as :

rx,yptq “ Aicospωit ` ϕiq

´

1 `
qi

2 cospΩT tq
¯

, ωi “

˜

c

ai `
q2

i

2

¸

ΩT

2 , i “ tx, yu

(4.17)

From Fig. 4.3, we observe that there are two different periodic motions, a slower one

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (µs)

1.0

0.5

0.0

0.5

1.0

Io
n 

po
sit

io
n 

(A
.U

.)

Figure 4.3: Atomic ion position in a trap: We plot the spatial position of an
ion along a specific dimension as a function of time. Assuming the following
parameters q “ 0.1, Ω “ 20MHz, ω “ 1MHz, we obtain the displayed atomic
motion. The low frequency oscillations at ω which is very clearly visible throughout
is called secular motion and is due to the effective confining potential. The high
frequency motion, discernible at the extremum points is driven motion or
micromotion at the trap frequency ΩT

at ωi known as secular motion, and a much faster one at the driving frequency of the

trap ΩT known as micromotion. Given that we have a stable ion orbit, the amplitude

of micromotion is much smaller than that of secular motion when ai ă q2
i ăă 1.

Micromotion is suppressed relative to secular motion, by a factor of qi, and causes

unwanted motion of the ions. We say unwanted because the fast motion of the ion

at the drive frequency can cause significant higher-order Doppler shifts, changes in

line shapes of atomic transitions and reduced confinement time of the ion in absence
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of cooling. However, it is the presence of micromotion that enables the trapping of

the ion.

If there are static, stray electric fields EDC x̂ (assuming the stray field is in

the x direction without loss of generality), then in Eq. 4.7, there is an extra term

QEDC{m [125]. This changes the solution of the equation to

rxptq “ pA0 ` Ai cospωit ` ϕiqq

´

1 `
qi

2 cospΩT tq
¯

A0 “
QEDC

mω2
x

(4.18)

This displacement of the ion causes excess micromotion along the x̂ direction, as we

can see from the extra term A0
qi

2 cospΩT tq. Similarly, a displacement along the (x̂`ŷ)

direction will cause micromotion along the (x̂´ ŷ). In general, micromotion happens

along the direction of the instantaneous electric field lines at the ion position. Unlike

secular motion, which can be cooled down by various laser cooling techniques as

we will see in the next chapter, micromotion cannot be cooled down because it is

driven by an external field. As such, it is critical that we ensure there is no excess

micromotion by making sure there are no stray fields. However, imperfections in the

trap, typically due to surface roughness on the rods of the trap or close by dielectric

structures, can cause charge accumulation, which can create stray electric fields. For

this reason, we apply DC voltages on the four rods to cancel out this stray field.

There can also be excess micromotion if the driving fields on the two rods are not in

phase. One can make them run in phase by adding a big capacitor between them.

Once we make sure that there is no excess micromotion and in the limit (a ăă q2),
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we see that the secular motion along the three axes is characterized by:

ωx “
Q

m

d

η2V 2
0

2Ω2
T r

4
0

´
mU0

qz2
0

(4.19)

ωy “
Q

m

d

η2V 2
0

2Ω2
T r

4
0

´
mU0

qz2
0

(4.20)

ωz “

d

2QU0

mz2
0

(4.21)

Note that the secular frequencies in the x-y plane are degenerate which can lead to

inefficient laser cooling in the said plane. Therefore, it is important to break this

radial degeneracy so that a single laser beam, in principle, can be non orthogonal

to all the principal axes of the trap, and therefore address the motional modes in

all three directions and provide good laser cooling. This can be done by applying

static quadrupole voltages on the four rods which create additional confinement and

anti-confinement along the x and y directions thereby lifting this degeneracy. The

new frequencies are then given by ωnew “

b

ω2
x,y ˘

QUDC

mr2
0

. We can cool the secular

motion so well using laser cooling techniques that they start behaving as a quantum

harmonic oscillator. We are then able to speak in terms of occupation numbers of

the phonon modes along the three principal directions. They are crucial for trapped

atom quantum computing as they are used for performing two qubit gates, cooling

operations, etc. [121, 126]. In a different architecture, by having exquisite control

over these bosonic modes, one can make qubits out of these fock states, as well as

perform quantum simulations [127, 128].

4.1 Ion Trap Construction

Our laboratory has three home-built, tungsten four-rod Paul traps: two legacy

systems (Alice and Bob), which we inherited before I joined the group, and a third

trap (Cleo) designed during our most recent apparatus development phase. A cross-
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sectional view of all three traps is presented in Fig. 4.4.

Alice and Bob share a conventional square geometry: each uses rods of 0.50 mm

diameter, with 1.00 mm spacing between adjacent electrodes on all sides. All these

systems serve for general quantum-networking experiments and protocol develop-

ment.

(a) Cross section of the rod trap for
Alice and Bob with a square aspect
ratio

(b) The rod trap for Cleo has an
elongated gap between rods along the
light collection direction to prevent
clipping of emitting light.

(c) Needle dimensions for axial confinement. For Cleo, the constructed
trap had a needle distance longer than designed due to technical
challenges, resulting in lower than expected axial frequencies. The cone
tip as measured from their pictures suggest an angle of about 12˝.

Figure 4.4: 4-rod trap dimensions for our setup

Cleo was specifically engineered to demonstrate high-rate remote entanglement,

which requires maximal photon collection. To achieve this, we integrated high-

numerical aperture lenses in vacuum (NA = 0.8) that need large optical access. In

a standard four-rod trap, the electrodes themselves can block a significant fraction

of the ion’s emission solid angle. To mitigate this, Cleo’s electrode layout is differ-

ent from the square aspect ratio: its rods are reduced to 0.25 mm in diameter, and
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the lateral spacing is elongated to 1.00 mm along one axis and narrowed to 0.56 mm

along the orthogonal (short) axis. This rectangular configuration minimizes blockage

by the rods, maximizing the effective collection solid angle.

Figure 4.5: Setup for electrochemical etching. The stainless steel cylinder can be
seen to isolate turbulence at the cathode. The rod can be seen clamped to the
rectangular block and the more prominent graphite rod can be seen to it’s right.

Figure 4.6: One of the fabricated needle for Cleo.

The trapped atomic ions have well-defined phononic states of a quantum harmonic

oscillator and it is possible to measure them as described in the next chapter. As such,
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Figure 4.7: Trap construction: The 4 rods and the two needles can be seen in
the trap holder. The white parts at the top and bottom are the MACOR holders,
carrying the in-vacuum aspheres. The protruding steel cylinder on the bottom is a
reentrant window for imaging ytterbium. Gold wires can be seen, which are
clamped to the surface of the asphere for grounding the Indium-tin oxide (ITO)
conductive coating on it’s surface

we can study the heating rate of these phonon modes and how they are affected due

to the ion trap itself. It has been observed that this heating rate scales roughly with

the distance d between the electrode surface and the atomic ion as d´4, is inversely

correlated with the secular frequencies and decreases when the ion traps are cooled

to low temperatures [129–133]. It has also been observed that surface electric field

noise plays a big role in high heating rate and as such it is important to reduce

the surface roughness as much as possible [134]. Therefore, we use electrochemical

etching techniques to decrease surface roughness.

For our trap in Cleo we need four clean, smooth tungsten rods and two needles

as the end caps. We follow the steps below to make them:

1. Start by having a 2M NaOH solution.

2. Use the tungsten rod as the anode and a graphite rod as the cathode.

3. Run 8A of current for 8 min. The structure used to hold the rods in place

gets coated in salt from the fumes. We clean this to maintain its conductivity.
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Continue etching until the rod breaks off and falls into the solution.

4. The part of the rod that falls into the solution is used as the needles.

5. For making the rods, we simply use a short etching time of approximately a

minute to smoothen the surface.

6. After we are done with the etching step, we put them in an oxygen free envi-

ronment, so that the rod surface does not oxidize.

We secure the six trap electrodes (four rods and two needle electrodes) in machined

MACOR holders. Each MACOR block contains five precision-drilled holes: four for

the rods and one for the needle electrodes. When inserting a needle electrode, we

thread its tapered tip carefully through the corresponding hole to avoid contact that

could blunt or deform it. Because the electrodes are held by friction fit, it is critical to

use rods and needles of the correct diameter; we fabricated a batch of approximately

thirty and selected those with the smoothest needle tapers and optimal fit in the

MACOR.

Once populated, each MACOR holder is mounted onto a larger support structure

attached to a vacuum chamber flange. The holder is secured by two side screws

(originally intended as setscrews, but replaced with standard machine screws during

assembly). Unfortunately, this substitution created an unwanted scattering of laser

light of wavelengths 413, 614, 650 and 935 nm directed at the ion. However, we have

not noticed any undesirable effects on the trap due to the scattered light.

We drive our traps with an RF source at a few tens of megahertz, but before the

signal reaches the electrodes it is amplified and sent through a quarter-wave helical

resonator to clean it up and match the trap impedances. The setup works as follows:

the amplified RF feeds an adjustable coil ‘antenna’ inside the resonator, which sits

next to two identical helical coils (15 mm pitch) wound on the same form but kept

apart by a Teflon spacer. These two helical coils that connect to the trap rods are

made of 5 mm thick copper with a coil diameter of 3.42 and a coil height of 5.22.
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They’re housed inside a hollow 42 diameter copper can that acts as a ground shield.

Here, at resonance, the guided mode inside the resonator along its axis has a quarter

wavelength equal to the height of the helical coil. Note that the wavelength of this

effective guided mode is shorter than the free-space wavelength.

The can also holds four extra copper wires (each on its own SMA connector) that

go to the two DC rods and the two needle electrodes. After everything was cleaned

with citric acid, the resonator rings with a quality factor „ 150 and a resonance

at 23.427 MHz. Of course, over time, an oxide layer can build up and deplete the

quality factor, as well as change the resonance frequency.

In practice, one end of our coil assembly takes the amplified RF, and the other

end terminates with six wires: two carry the RF to the trap rods (we short them

together with a capacitor (100nF, 1kV) so they stay in phase and avoid unfixable

micromotion), and four carry fixed DC voltages. All six go through a vacuum-rated

RF feedthrough (good up to 2 kV against ground). The Alice and Bob traps use

similar setups with older resonators but the same basic RF-delivery scheme.

4.2 Ion Loading

In our experiments, we work with both barium (138Ba`) and ytterbium (171Yb`)

atomic ions, requiring us to develop methods for generating and trapping these

species. The process of ion trapping begins with an atomic source that emits a

thermal beam of neutral atoms. This beam must pass through the trapping region

of the linear Paul trap, which subsequently gets confined in a stochastic manner. To

ensure a reasonable loading time (typically a few minutes), the atomic beam must

have sufficient flux through the trap center.

Step 1: Atomic Beam Generation

To create the atomic beam, we use resistively heated atomic ovens. These ovens

are mounted on holders that contain two small-diameter hollow needles (typically 1–2
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mm), each containing the appropriate neutral atomic species. The oven assembly

is affixed to the side of the vacuum chamber using Groove Grabbers from Kimball

Physics, with the open end of each needle directed toward the ion trap center. One

needle is filled with 99%+ isotopically enriched 171Yb metal, while the other contains

natural-abundance barium beads.

Ytterbium oven

Ytterbium is relatively stable in air, making the loading process straightforward.

We load several mg of 171Yb metal into a hypodermic needle, crimping one end to

seal it. The needle is then fixed into the over holder with its open end aligned with

the trap. We TIG weld a coil of .0162 diameter tungsten wire around the crimped

end to serve as a resistive heater. We estimate the length of these tungsten wires to

be roughly 22. These ovens generally require „2 A of current to reach operational

temperatures and produce a stable atomic flux for photoionization.

Barium oven and handling

Barium, on the other hand, is highly reactive and oxidizes quickly upon contact

with air. This sensitivity necessitates a more involved loading procedure. First, the

chamber is pumped to high vacuum, and the barium oven is pre-baked by running a

high current (8A) to remove any residual moisture. The chamber is then back-filled

with an inert gas (nitrogen) to atmospheric pressure. Barium beads, packaged under

argon in sealed glass ampoules, are broken open in a dish. All tools used for handling

are vacuum-cleaned in advance to remove surface contaminants. Using tweezers, the

beads are loaded into the oven in a few seconds. Although some surface oxidation

occurs during this time, visible as a whitening of barium, the bulk remains usable for

atomic flux generation. Immediately after loading the oven, we closed the chamber

and pumped it down.

In different trap systems, the barium ovens are configured slightly differently. For
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example, in the Alice setup, the Ba oven is run at 8 A due to the fact that it does not

contain a tungsten heating coil. In Bob and Cleo, where tungsten heating coils are

used, the Ba ovens operate more efficiently, typically around 2 to 2.5 A, matching

the currents of the Yb oven.

Step 2: Photo-ionization

The electronic configuration of 171Yb is [Xe] 4f14 6s2. After removing an electron

in it’s outermost s-shell, the remaining s-electron bound to the atom is used for

quantum computing. We use a 399 nm laser which is wavemeter locked to less

than 10 MHz to drive a dipole transition between 1S0 and 1P1. Immediately after

this, a 370 nm cavity-locked laser sends this excited electron to continuum, therefore

completing photo-ionization. We use several mW of 399 nm and a few µW of 370

nm focused to a hundred micron spot size. A moving atom after getting ionized will

get trapped if its kinetic energy is less than the depth of the potential of the trap.

Subsequently, Doppler cooling beams reduce its temperature to a few micro Kelvin.

The electronic configuration for 138Ba is [Xe] 6s2. Similarly, we strip its outermost

s-shell electron, but now we use a 413 nm laser beam. First, the electron gets

promoted to 3D1 via a quadrupole transition, followed by complete ionization using

the same laser. Several mW of 413 nm laser power is required to perform this

ionization. Another possible way to ionize them is for the first step to be a dipole

transition via 553 nm light, which couples 1S0 to 1P1, followed by promotion to the

continuum by 413 nm.

An important point to note here is that, since the ovens are at non-orthogonal

angles to the ion traps, the atoms from the oven experience substantial Doppler

shifts. Therefore, it is crucial to adjust the frequencies of the ionizing lasers. A

typical atom beam, in our vacuum chambers, has a velocity of around 300 m/s. In

42



Table 4.1: Oven angles for different chambers
Alice Bob Cleo

Angles for barium (θ) 15˝ 112.5˝ 67.5˝

Angles for ytterbium (θ) 67.5˝ 157.5˝ 67.5˝

such a case the Doppler shift is :

∆f “ f
v

c
cos θ “

v cos θ
λ

“ 750 MHz cos θ (4.22)

Table 4.1 lists these angles for our three chambers.

This chapter has demonstrated how we ionize and trap atomic ions in a stable

configuration. The charge of the atom has acted like an extra degree of freedom to

pin it in space. In the next chapters, we discuss how we can interact with these

trapped atomic ions using electromagnetic fields.
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5

Qubit Control: Atom Light Interaction

Atom-light interactions are the fundamental processes through which quantum

control of atomic systems is achieved. In trapped ion quantum computing and quan-

tum networking, the ability to manipulate the atom’s spin states, control its tem-

perature, perform entangling operations, and interface with photonic channels relies

on precise and sometimes coherent control of these interactions [121, 135]. In the

next couple of sections, we talk about both coherent and incoherent operations on

the atomic ions.

5.1 System Hamiltonian

An ion trapped in a linear Paul trap has several degrees of freedom. The fact

that it is trapped in a quadratic pseudo-potential makes it behave like a quantum

harmonic oscillator; therefore, it has motional degrees of freedom which are the

occupation numbers of phononic modes along different directions. The atomic species

we deal with in this work has a single electron in its outer shell, which orbits around

the nucleus, giving it a relatively simple atomic level structure. For theoretical

consideration, we look at only two levels of the spin state at a time, corresponding

to an effective two-level approximation. This means that the electron has a ground

state and an excited electronic state which differ in energy by ℏω0. Then, any light

interacting with the system, is considered by an interaction Hamiltonian [121, 135].
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Therefore,

H “ Hm ` He ` HI (5.1)

where we have three different Hamiltonians Hm, He, HI corresponding to the motion,

spin, and light-matter interaction of the atom.

Hm “ ℏωm

ˆ

a:a `
1
2

˙

(5.2)

He “
ℏω0σz

2 (5.3)

HI “ ´d ¨ E (5.4)

Here, σz “ |ey xe| ´ |gy xg| represents the diagonalized electronic Hamiltonian with

|ey and |gy representing the two-level spin system with an energy splitting ω0. The

energy spacings of the quantized oscillations of the harmonic oscillator correspond

to ωm. In the presence of an electric field E and an effective dipole moment of the

ion d we expect to see an interaction of the form ´d ¨ E. Through the interaction

Hamiltonian we expect to see terms that change the spin state of the electron or

the motional state of the electron, or a coupling between each of them. We perform

the analysis of this interaction Hamiltonian in the semi-classical framework, where

the electric field is treated classically but the dipole operator is treated quantum

mechanically. We assume a traveling plane wave in the x-direction with an arbitrary

polarization E0 “ Eyŷ ` eiϕEz ẑ of the form

Epx, tq “ E0e
ipkx´ωtq`

` c.c. (5.5)

We can write the interaction Hamiltonian in a complete basis as:

HI “ ´
ÿ

i,jPte,gu

|iy xj| xi| d ¨ E |jy (5.6)

The matrix element xe| d ¨ E |gy, gives rise to coupling strengths among two different

levels that we choose based on selection rules. We will look at the three important
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couplings which we use in our experiments to perform various tasks such as Doppler

cooling or coherent transitions. But first, assume a coupling strength of xe| d¨E0 |gy “

ℏΩ
2 , where |Ω| is the Rabi frequency of the driven transition and effective wave vectors

and frequencies of the light are given by k and ω. We will see later that, different

polarizations of the electric field, can couple different quantum states. We then

rewrite HI as

HI “
ℏΩ
2 p|ey xg| ` |gy xe|q eipkx´ωt`ϕq

` h.c. (5.7)

This can be very easily generalized to 3 dimensions by replacing kx with k.r. We

recognize that the two-level system with |ey and |gy can be written in terms of Pauli

matrices:

|ey xg| ` |gy xe| “ σx (5.8)

“
1
2pσx ` iσyq `

1
2pσx ´ iσyq (5.9)

“ σ` ` σ´ (5.10)

Here, σ` and σ´ are the spin raising and lowering operators. Thus, we can write

HI “
ℏΩ
2 pσ` ` σ´qeipkx´ωt`ϕq

` h.c. (5.11)

Now we move to the interaction frame by the unitary transformation with the oper-

ator U0 “ e´
iH0t

ℏ with H0 “ Hm `He, being the free Hamiltonian. After the unitary

transformation, we get

Hint. frame “ U :
0HIU0 (5.12)

“ e
iHmt

ℏ e
iHet
ℏ

ˆ

ℏΩ
2 pσ` ` σ´qeipkx´ωt`ϕq

` h.c.

˙

e´
iHet
ℏ e´

iHmt
ℏ (5.13)

We were able to do this because the motion part and the spin part commute (rHm, Hes “

0). Furthermore, we observe that rHm, pσ` ` σ´qs “ 0. Also, unlike regular angular
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momentum, spin angular momentum is intrinsic and acts on different parts of the

wave function, therefore rσz, xs “ 0. Hence, we can rewrite

Hint frame “
ℏΩ
2 e

iHet
ℏ pσ` ` σ´qe´

iHet
ℏ e

iHmt
ℏ

`

eipkx´ωt`ϕq
˘

e´
iHmt

ℏ ` h.c. (5.14)

“
ℏΩ
2 pσ`e

iω0t
` σ´e

´iω0t
qe

iHmt
ℏ

`

eipkx´ωt`ϕq
˘

e´
iHmt

ℏ ` h.c. (5.15)

The first part of the equation can be written as:

e
iω0σzt

2 pσ` ` σ´q e´
iω0σzt

2 “ “ e
iω0σzt

2 p|ey xg| ` |gy xe|q e´
iω0σzt

2 (5.16)

“ e
iω0σzt

2 |ey xg| e´
iω0σzt

2 ` e
iω0σzt

2 |gy xe| e´
iω0σzt

2 (5.17)

“ |ey xg| eiω0t
` |gy xe| e´iω0t (5.18)

“ σ`e
iω0t

` σ´ e´iω0t (5.19)

If we take the e˘iωt term and combine it with the e˘iωot, we will get two slowly

oscillating terms and two fast terms. Because the fast terms oscillate so quickly,

at (roughly) the sum of the optical and laser frequencies, i.e. tens or hundreds of

terahertz, their contribution averages to (almost) zero over any timescale on which

the atomic state actually changes. We drop them by using the rotating-wave approx-

imation (RWA), and it is valid whenever the atom–light coupling strength Ω and the

detuning ∆ “ ω0 ´ω is much smaller than the optical frequency itself, Ω, |∆| ăă ω0.

The motional part of the Hamiltonian in interaction frame is equivalent to writing

the kx term by its Heisenberg-picture version [121],

kxptq “ ηpau˚
ptq ` a:uptqq (5.20)

where we define the supremely important parameter of ion trapping called the Lamb-

Dicke parameter [121] as

η “ kx0 “ 2πxo

λ
x0 “

c

ℏ
2mν (5.21)
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Here, η is a measure of the size of the wavefunction compared to the wavelength of

light interacting with it and uptq “ eiνtΦptq with Φptq being a periodic function with

a period of 2π{ΩT and ν is the secular frequency of the trapped ion. u(t) satisfies

the equation of motion :uptq `

´

Ω2
T

4 ra ` 2q cospΩT tqs

¯

uptq “ 0, with the boundary

condition up0q “ 1 and 9up0q “ iν. If the ion is sufficiently cold and tightly confined

by the trap, η is small and the atom experiences a spatially homogeneous electric

field from the light field. So we now have

Hint frame “
ℏΩ
2 σ`e

irpω0´ωqt`ηpau˚ptq`a:u˚ptqqs
` h.c. (5.22)

For a trapped ion, if pa, q2q ăă 1, we can rewrite the interaction Hamiltonian as

Hint frame “
ℏΩ0

2 σ`e
irηpae´iνt`a:e´iνtq`δt`ϕs

` h.c. (5.23)

Here δ “ ω ´ ω0 is the detuning between the light’s frequency and the frequency of

the electronic two-level system, ϕ is the laser phase as measured with respect to the

local oscillator in the lab frame, ν “ βωT {2 is the secular frequency as we had seen

in the previous chapter, and Ω0 is the scaled interaction strength. In the limit where

η is small, that is, the ion is cooled well, or the interacting wavelength is large or

both, we obtain dynamics in the Lamb-Dicke regime. In such a case, we can expand

the exponential and keep only the first-order terms, thereby giving us

Hint frame “
ℏΩ0e

ipδt`ϕq

2 σ`p1 ` iηpae´iνt
` a:eiνt

qq ` h.c. (5.24)

The first term gives rise to the carrier transition term for δ “ 0, ϕ “ 0

Hcarrier “ ℏΩ0σx (5.25)

This causes transitions between the two internal electronic states or spin-flipping

transitions, as is evident by the σx operator. The second term gives the blue and
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red sideband (bsb, rsb) transitions, which change the electronic state as well as the

motional state (in terms of the phononic occupation number),

Hrsb “
ℏΩ0

2 ηraσ` ` a:σ´s (5.26)

Hbsb “
ℏΩ0

2 ηraσ´ ` a:σ`s (5.27)

For the red sideband, we need to have δ “ ´ν and for the blue sideband we need

δ “ ν. These transitions increase or decrease the motional quantum number at the

expense of changing the electronic spin state. The red sideband decreases one unit of

motional quanta while exciting the electronic state. The reverse process occurs for

the blue sideband. We can relate the coupling strengths of the carriers and sidebands

as follows:

Ωn,n´1 “ ηΩ0
?
n (5.28)

Ωn,n`1 “ ηΩ0
?
n ` 1 (5.29)

Ωn,n´1 “

c

n

n ` 1Ωn,n`1 (5.30)

In general, one can couple any of the phononic states to any other by choosing

appropriate detunings δ “ ˘ml, for any integer m. This comes at the cost of a

reduced coupling strength. The generalized Rabi frequency for this case is given

by [121]:

Ωn`s,n “ Ω0| xn ` s| eiηpa`a:q
|ny | (5.31)

“ Ω0e
´η2{2η|s|

c

nă!
ną!L

|s|
năpη2q (5.32)

where năpnąq is the lesser (greater) of n+s and n and L is the generalized Laguerre

polynomial given by:

L|s|
nă

pη2
q “

nă
ÿ

m“0
p´1q

m
´

nă`|s|
nă´m

¯ η2m

m! (5.33)
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5.2 Dipole coupling

We now look at different kinds of transition in terms of the effective Rabi fre-

quencies, selection rules, and wavelengths of light that we use to drive our specific

atomic systems. We have already seen that the general Rabi frequency for carrier

transitions is proportional to |Ω|, where

ℏΩ{2 “ xe| d.E0 |gy (5.34)

This equation is helpful in calculating the transition strength between any two states

|ey and |gy mediated by the dipole interaction. But first it is important to find out the

possible quantum numbers or energy levels that are driven by such an interaction.

Using the fact that odd/even orbital angular momentum states L are odd/even

under parity change, and so is the dipole operator, we can conclude that the change

in orbital angular momentum number must be odd. Furthermore, by taking the

expectation values of the following equation with respect to the states |L,mLy

rL2, rL2, rss “ 2ℏ2
prL2

` L2rq (5.35)

we get the selection rule

∆L “ ˘1 (5.36)

Obviously, since the dipole operator does not have any spin degree of freedom, it

cannot effect changes to the spin quantum number of state. This along with ∆L “ ˘1

straight forwardly gives

∆J “ ˘1, 0 (5.37)

∆F “ ˘1, 0 (5.38)

for J “ L ` S and F “ J ` I, where I is the nuclear spin. Certainly J : 0 Ø 0 and

F : 0 Ø 0 is not allowed since that would violate ∆L “ ˘1.
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If we have an electric field of different polarizations we can write them out as

E “ Eσ`

px̂ ` iŷq
?

2
` Eσ´

px̂ ´ iŷq
?

2
` Eπẑ (5.39)

Here, σ` and σ´ are right and left circular polarizations of the electric field vector.

The dipole moment operator consists of the charge q and the position operator

of the electron. Similar to the electric field, we write the position operator in the

spherical harmonic basis

r̂ “ r

c

4π
3

ˆ

Y ´1
1
x̂ ` iŷ

?
2

` Y 0
1 pẑq ` Y 1

1
x̂ ´ iŷ

?
2

˙

(5.40)

where the spherical harmonics are

Y ´1
1 “

1
2

c

3
2π sinpθqe´iϕ (5.41)

Y 1
1 “ ´

1
2

c

3
2π sinpθqeiϕ (5.42)

Y 0
1 “

1
2

c

3
π

cospθq (5.43)

The dot product then is:

r ¨ E “ r

c

4π
3 pEσ`Y ´1

1 ` Eσ´Y 1
1 ` EπY

0
1 q (5.44)

By calculating the expectation value of the above operator over the angular part

of the wavefunction, we find that light fields, whose polarization is along the π

direction, induce transitions without any change in the z projection of the angular

momentum.

π Ñ ∆mj “ 0 (5.45)
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Circularly polarized fields, on the other hand, induce a unit change in the z projection

of the angular momentum.

σ`
Ñ ∆mj “ `1 (5.46)

σ´
Ñ ∆mj “ ´1 (5.47)

Since we are looking at the z projection, that means that we have already assumed

a quantization axis along the z direction. In a physical system, this is set by the

direction of the magnetic field. In summary, light propagating along the quantiza-

tion axis with circular polarization will induce transitions that change the angular

momentum projection, whereas light with polarization parallel to the quantization

axis cannot change the angular momentum. These are called σ and π transitions,

respectively.

Now, we are ready to apply this knowledge to our system of interest. Fig. 5.1

shows the level diagram of 138Ba`with all dipole transitions labeled. Clearly, the

dipole transitions connect levels either between S Ñ P or P Ñ D, following the

selection rules described earlier. We see the low lying excited state 2P1{2, which

decays into the the ground state 2S1{2 and the low lying, long-lived 2D3{2 level. 73% of

the time it decays to the S manifold by emitting a 493 nm photon and the remaining

decay into the D manifold happens via a 650 nm photon [92]. As mentioned in

Chapter 3, the 493 nm transition is the longest wavelength S Ø P transition among

the group II ions, which makes barium ions appealing as a photonic qubit. One may

also think of using the longer wavelength P Ñ D transition of 650 nm. However, that

transition has a lower branching ratio of 23% while emitting σ`, σ´, π photons which

can lower the percent of collected photons. The higher energy 2P3{2 state decays into

the two D levels via various two wavelengths as seen in Fig. 5.1. Both these states

are very short lived, having a lifetime of less than 8 ns. This is because there exist

levels S and D which couple in a dipolar fashion to P , and the spontaneous emission
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Figure 5.1: Barium dipole transitions: 493 nm and 650 nm are primarily
used for cooling and detection, 614 nm for re pumping, while we do not use 455,
584 nm light. The wavelengths are take from [89].

rate goes as the square of the transition dipole moment, which we encountered earlier

as Ω. For this reason though, the S Ø P transitions are good for laser cooling, state

preparation and fluorescence based state detection, with a high scattering rate in

the tens of MHz. In cases, when the spontaneous emission rate is comparable to the

stimulated driving rate, equilibrium is reached and the dynamics of the system is

completely incoherent. In the following sections, we go into details for each of these.
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5.2.1 Applications: Doppler Cooling

Doppler cooling is a technique of laser cooling which takes advantage of the direc-

tion dependent Doppler shift of light as observed in the atom’s frame of motion [77].

Here the following derivations are based on a two level atomic system. Before delving

into the theory of Doppler cooling, we first state the photon scattering rate Γ by an

atom with velocity v, energy splitting ω with linewidth γ, interacting with laser light

of intensity I is given by

Γpω,vq “
sγ{2

1 ` s ` 4 pω´ωL`k.vq2

γ2

(5.48)

Here ωL is the laser frequency, k is the laser propagation direction, and s is the

saturation parameter defined as

s “
I

Isat

“
I

πhcγ
3λ3

(5.49)

When a transition is saturated (s ąą 1) , half of the population lives in the excited

state and the other half in the ground state. For each of these scattering events

the atom gets a photon recoil kick during absorption and another from spontaneous

emission. Given that the atom emits along the direction of the wave vector ks, the

change in energy of the atom during such a scattering event is

∆E “
pmv ` ℏk ´ ℏksq2

2m ´
pmvq2

2m (5.50)

“ ℏ2 pk ´ ksq2

2m ` ℏpk ´ ksq.v (5.51)

The total rate of change of energy is then simply a product of the scattering rate

and the change in energy, along the principal direction of the trap i

dEi

dt
“ Γpω,vq

A

ℏkivi ` Rpfi ` fsiq

E

(5.52)
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where fi, fsi are the geometrical factors for the incident and scattered photons respec-

tively. For the incident photon, fi “ k̂i

2. For the scattered photon, fsi “ Pspk̂sqk̂s

2

with Pspk̂sq describing the normalized emission pattern. For isotropic emission and

scattering, we have Pspk̂sq “ 1{4π, fsi “ 1{3 and xksy “ 0 [75].

We average the rate of change of energy over all the velocities assuming that the

atom oscillation frequency is much smaller than the radiative linewidth, so xvy “ 0.

We also assume the fact that the Doppler shift is much smaller than the detuning

given as ∆ “ ω ´ ωL,to obtain the following approximation of Eqn 5.48

Γpω,vq “
sγ{2

1 ` s ` 4∆2

γ2

„

1 ´
8∆k.v

γ2p1 ` sq ` 4∆2

ȷ

(5.53)

In equilibrium, we can set dEi

dt
“ 0, xviy “ 0 and xvivjy “ 0 for i ‰ j. This lets us

solve for the steady state Doppler cooling energy

ED
i “ mxv2

i y “
ℏγ
4

ˆ

1 `
fsi

fi

˙ˆ

∆
γ

`
γp1 ` sq

4∆

˙

(5.54)

“
ℏγ
4

ˆ

1 `
1

3cos2θ

˙ˆ

∆
γ

`
γp1 ` sq

4∆

˙

(5.55)

One can obtain the Doppler cooling temperature by simply dividing by the Boltz-

mann constant kB and we see that this is minimized for low values of s at θ “ 0 and

∆ “
γ
2

TD
min “

ℏγ
3kB

(5.56)

We primarily use the transition between S1{2 Ø P1{2 via 493 nm light for Doppler

cooling, since it needs only one repumper (650 nm) unlike the S1{2 Ø P1{2 transition.

The saturation intensity for this transition is 21.7 mW{cm2 (0.217 nW{um2). The

Clebsch-Gordon coefficient for the ∆m “ 0 transition is
a

1{3 while for the ∆m “ ˘1

transition is
a

2{3. So if we work with only σ`{´ light, the saturation intensities
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get multiplied by a factor of 2{3 resulting in 14.5 mW{cm2 (0.14 nW{um2). This

shows that dipole transitions typically need a tiny amount of power, „100 nW when

focused well (10s of micron spot size). In our experiment, we maintain a saturation

parameter between 1-2, for all our chambers. We also red de-tune this light by 10

MHz (∆ “ γ{2) from resonance to obtain good Doppler cooling.

The presence of the low lying D level along with all the Zeeman levels creates a

complex Λ system which is not as straightforward as the theory presented for Doppler

cooling. Sources [136], suggest that blue and red detuning of the same amount of

the 650 nm laser achieve the same Doppler cooling, with maximum cooling power

on resonance. Nevertheless, we use the 650 nm light as a re-pumping beam by

having a high saturation. In such a case, the job of the 650 nm light is to effectively

depopulate the D3{2 level at a very high rate so that the electron mostly remains

between S1{2 Ø D3{2 and the cooling is done mainly by the 493 nm light.

We also set a magnetic field of roughly 4.1 G, which results in a Zeeman splitting

of roughly 12 MHz in the S1{2 manifold. To address all Zeeman levels, we use σ`, σ´

and π transitions as noted earlier. The 493 nm laser beam, set 10 MHz apart, is sent

along the direction of the magnetic field with left and right circular polarizations

which drive the σ´ and σ` transitions, driving |2S1{2,mJ “ 1
2y Ø |2P1{2,mJ “ ´1

2y

and |2S1{2,mJ “ ´1
2y Ø |2P1{2,mJ “ 1

2y respectively. To obtain these polarizations,

we first combine H and V polarized light coming out of two different fibers onto a

polarizing beam splitter, which we send into a quarter wave-plate. The 650 nm light

acting as the re-pumper (clearing out the D3{2) levels needs to drive all the σ and π

transitions. This is achieved by having linearly polarized light at an acute/oblique

angle to the magnetic field, such that in the atom’s frame of reference we have all

the polarizations.

Using such techniques, we are able to get close to the Doppler cooling limit for

the trapped ions, which come out as „300µK. Initially, during trapping the atomic
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ions have a lot of kinetic energy from the fact that they start out hot (« 573 K) in

the atomic oven. This is why we use a separate trapping beam, which has several

hundred µW of 493 nm light with a large detuning of 200 MHz. This helps to cool

much faster but equilibrates to a high Doppler temperature. Once we trap, we turn

off the trapping beam.

There is also another repumping laser, which is used to clear out the D5{2 level.

This is mainly used when we populate the D5{2 levels, as we will see in the next

section. We send about 3-5 uW of 614 nm light parallel to the 650 nm beam for this

purpose. Next, we look at the use of different polarizations to prepare the electron

in a pure state.

5.2.2 Applications: Optical Pumping

The Zeeman shifts we obtain for a field of 4.1 G, for barium, are approximately 12

MHz at the S1{2 levels. We distinguish them by using different polarizations. Optical

pumping is a technique where one selectively clears out specific states such that the

transition that is not driven is incoherently populated over a specific timescale.

For example, consider the level diagram shown in Fig. 5.2. If one shines σ` light

on resonance with the transition, over several scattering cycles and some characteris-

tic time depending on the laser powers and frequency detunings, the electronic state

will be probabilistically prepared in the edge state. This is because the edge state

is untouched by the σ` transition while the rest are cleared out by the same. The

purity of pumping for such a state is given directly by the purity of polarization.

Experimentally, this is tantamount to aligning the beam direction appropriately to

the quantization axis. In 138Ba`, we typically start our experiment by pumping into

|2S1{2,mJ “ ´1
2y. We do so by turning on σ´ 493 nm light and the 650 nm re-pumper

light for several µs, as seen in Fig. 5.3. In this way, we are able to prepare the state

deterministically. Our polarizations are aligned to the quantization axis by using the
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Figure 5.2: Optical pumping: Here σ` light is used to clear out the
populations from |mJ “ ´1, 0y to prepare a pure state in |mJ “ 1y.

atomic ion as a probe. With the σ´ 493 nm beam and the 650 nm repumper turned

on, there should not be any fluorescence from the atom, since it is pumped into a

state which does not interact with the laser field (also called a dark state). We look

at the fluorescence counts and attempt to minimize it by tuning the magnetic field

direction by tweaking a 2 axis current-carrying coil. This lets us align the magnetic

field to a precision such that we can pump with >99.5% purity.

5.3 Quadrupole Transitions

Quadrupole transitions occur between states of the same parity. In barium (Ba),

quadrupole transitions are particularly relevant for transitions between the long-

lived metastable states, such as the S–D transitions. These transitions are central to

precision spectroscopy, atomic clocks, and quantum computing applications involving

trapped ions [137, 138].

The electric quadrupole moment arises from a non-uniform spatial distribution of

the electron charge cloud in an atomic state. Unlike the electric dipole moment, which

involves a linear charge displacement, the quadrupole moment describes a second-

order spatial distribution, reflecting how electron densities deviate from spherical

symmetry. This non-uniformity allows transitions that involve changes in angular

momentum states otherwise inaccessible by electric dipole radiation. The interaction
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Figure 5.3: Optical pumping in 138Ba`: We initialize the state in
|0y “ |S1{2,mJ “ ´1{2y, by shining 650 nm light containing both σ, π components,
and only σ´ 493 nm light. We use „ 50 µW of 650 nm light and „ 50 ´ 100 nW of
493 nm light.

Hamiltonian will now contain additional terms

HI “ ´d ¨ E ´
1
6
ÿ

i,j

Qij∇iEj (5.57)

Here Qij is the electric quadrupole moment tensor and Ej is the jth component of

the electric field. This is further defined as

Qij “ qp3xixj ´ x2δijq (5.58)

In the dipole approximation, we assumed the electric field to be spatially constant

over the atomic wave function. For a higher order approximation, we need to consider

how the spatial gradient of the electric field affects the atom, which gives us the

quadrupole term. To find the quadrupole transition rate and selection rules, one

needs to sandwich the Qij term in the Hamiltonian between the final and the initial

states. One can perform extensive calculations using Winger-Eckert theorem on the
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way to find the Rabi frequency for the quadrupole transition as [139]

ΩQP
0 “

qE

ℏ

g

f

f

e

15p2je ` 1qΓQP

4cαk3

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

m

˜

je 2 kg

me m mg

¸

ÿ

ij

cijkiEj

ˇ

ˇ

ˇ

ˇ

ˇ

(5.59)

Here we have the following notations: pjg, jeq and pme,mjq are the angular momen-

tum quantum numbers for the ground and the excited state, α “ e2{4πϵ0ℏc is the

fine structure constant, k is the wave vector and E is the electric field amplitude.

ΓQP is the spontaneous decay rate. The tensor cij can be found in the reference

[140] and the term within the round brackets refer to the Wigner 3-j symbol. The

selection rules for the quadrupole transitions read as follows:

∆J “ 0,˘1,˘2 J : p0 Ü 1, 2q, p1{2 Ü 1{2q (5.60)

∆mJ “ 0,˘1,˘2 (5.61)

If we assume a linear polarization for the light field and the magnetic field oriented

along the z direction, we assume k and E along the direction given as, and seen in

Fig. 5.4

k “ psinpϕq, 0, cospϕqq (5.62)

E “ pcospγqcospϕq, sinpγq, ´cospγqsinpϕqq (5.63)

We can also write out the last term of Eqn. 5.59 for different changes in m as follows

ΩQP
0 pm, γ, ϕq „ 1{2|cospγqsinp2ϕq| m “ 0 (5.64)

„ 1{
?

6|cospγqcosp2ϕq ` isinpγqcospϕq| m “ ˘1 (5.65)

„ 1{
?

6|cospγqsinp2ϕq{2 ` isinpγqsinpϕq| m “ ˘2 (5.66)

We plot these equations in Fig. 5.5 to see how we need to orient the laser k vector

and polarization to drive specific transitions.

In 138Ba`, the transition between the S1{2 ground state and the metastable D5{2

state has a wavelength of 1762 nm [101, 141]. The S1{2 Ø D5{2 transition is in-

herently weak because it involves quadrupole radiation, resulting in a very narrow
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Figure 5.4: Definition of angles: γ, ϕ define the quadrupole Rabi frequencies.
k̂ is the propagation direction of the laser, Ê is the electric field polarization, and B̂
is the magnetic field direction.

linewidth and a long-lived upper state. Such transitions, despite their low prob-

ability, enable precise control and coherence in quantum systems due to minimal

spontaneous emission.

Fig. 5.6 shows the quadrupole transitions in 138Ba`, connecting the S manifold

to the D3{2 and D5{2 manifolds. We drive the 1762 nm transition with an NKT,

thulium doped, distributed feedback fiber laser [143]. This light is sent to a fiber

amplifier which boosts the power to 450 mW. Since the transition is quite narrow, at

6.1 mHz, we would need to stabilize the laser quite well to drive coherent operations

on it. We PDH lock this laser using an ULE hemispherical cavity with a measured

finesse of « 540000. We measured a linewidth upper bound of 270 Hz based upon

comparison of coherence time measurements with another laser.

We split off this laser into three paths and couple them into individual fiber

acousto-optic modulators (AOM) for Alice, Bob and Cleo chambers. Each AOM is

driven by an RF signal from either a direct digital synthesizer (DDS) or an arbitrary

waveform generator (AWG), which provides precise control of the phase along the

three optical paths. After the individual AOMs they are sent to the chambers via
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(a) ∆m=0 (b) ∆m=˘1

(c) ∆m=˘2

Figure 5.5: Quadrupole transition strengths: Corresponding to different
angles for ϕ and γ we obtain different Rabi frequencies for transitions with different
∆m.

polarization maintaining fibers. In all three systems, approximately 10-20 mW of

laser power is focused to a « 20 µm waist at the ion. We use a half wave plate

and polarizer to send clean polarized light to the atom. Depending on the relative

direction of the magnetic field (quantization axis) and the k vector of the light, we

can drive different carrier transitions as seen in Fig. 5.4 and Fig. 5.5. Specifically, we

have used two configurations, γ “ 0, π{4. We use this laser for various applications

as described in the next sections.
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Figure 5.6: Quadrupole transitions of 138Ba`. We use the 1762 nm transition
heavily, for electron shelving detection, optical qubits, and sideband addressing.
We currently do not use 2052 nm in any of our remote entanglement experiments,
although potential use cases may be to perform mid circuit readout of stark shifted
ancilla qubits [142].

5.3.1 Applications: Single optical qubit gates

Quadrupole transitions can be used to drive single qubit gates. We start by

rewriting the interaction for the carrier transition, seen earlier in Eq. 5.25

HI “
ℏΩ0

2
`

σ`e
ipδt`ϕq

` σ´e
´ipδt`ϕq

˘

(5.67)

Ω0 is the quadrupole coupling strength, which in this case is due to the 1762 nm

laser intensity (and it’s spatial gradient) at the atom. We transform into the drive

frame which is given as

Upδq “ |0y x0| eiδt{2
` |1y x1| e´iδt{2 (5.68)
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The resulting Hamiltonian would then be

HIδ
“

ℏδ
2 σz `

ℏΩ0

2 pσ`e
iϕ

` σ´e
´iϕ

q (5.69)

The propagator for this Hamiltonian is identified as the propagator for the well-

known Rabi oscillation

UIptq “

˜

cospΩδt{2q ´ iδ
Ωδ

sinpΩδt{2q ´i Ω
Ω∆

sinpΩδt{2qe´iϕ

´i Ω
Ω∆

sinpΩδt{2qe`iϕ cospΩδt{2q ` iδ
Ωδ

sinpΩδt{2q

¸

(5.70)

Here we have defined Ωδ “
a

Ω2
0 ` δ2 as the general Rabi frequency. If we associate

the two levels, defined earlier as the excited |ey and ground |gy state, with the state

vectors

|gy “

˜

1
0

¸

(5.71)

|ey “

˜

0
1

¸

(5.72)

then we can drive resonant transitions with this carrier drive between the states

(Rabi oscillations)

|ψptqy “ U δ
I ptq |0y “

˜

cospΩ0t{2q

i sinpΩ0t{2q

¸

e´iϕ (5.73)

If we look at the probability of finding the atom in the |0y state, we see that it

oscillates sinusoidally between the two states with full population transfer happening

at the π-time of the drive (t “ π{Ω0)

P p0q “ cos2
pΩ0t{2q (5.74)

We see these oscillations at different detunings in Fig. 5.7. This laser based inter-
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Figure 5.7: Rabi oscillations: Only during resonance δ “ 0, these oscillations
transfer populations completely between |0y Ø |1y. For δ ą 0, we have partial state
transfer.

action forms the basis of single qubit X and Y gates for quantum computing. The

phase and rotation angle are adjusted by setting the duration and phase of the pulse.

The single qubit Z gate corresponds to only a phase change and therefore can be

implemented by keeping track of the phase and updating the phase of upcoming X

and Y rotations. More generally we can write these as the rotation transformations

in the Bloch sphere, given by

Rpθ, ϕq “

˜

cospθ{2q ´i sinpθ{2qe´iϕ

´i sinpθ{2qeiϕ cospθ{2q

¸

(5.75)

where θ “ Ω0t is the pulse angle and ϕ is the phase of the laser relative to some local

oscillator.

5.3.2 Applications: Resolving sidebands

Due to the narrow linewidth of the 1762 laser, we can use it to probe sidebands,

as seen in the equations following 5.26. These transitions are suppressed by a factor

of η2, but they help to couple spin with motion. Fig. 5.8 illustrates what these
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transitions look like. In this figure, we show some Zeeman levels in the S and D

-1/2

-1/2

+1/2

-3/2

6 2S1/2

5 2D5/2

1762 nm

t = 30 s

+1/2

2.8 MHz/G

1.68 MHz/G

Axial-z
Sideband

Radial-y
Sideband

Radial-x
Sideband

Figure 5.8: Sideband transitions with 1762 nm light: We show some of the
relevant levels that the 1762 beams can address. Each of the Zeeman levels, have
sub-levels corresponding to the phononic occupation number along the 3 motional
directions (2 radials and 1 axial, assuming there is a single trapped atom.) The
sideband transitions are suppressed by a factor of η2 and change the motional and
the spin state together. The motional frequencies in range between 100s of kHz and
several MHz.

manifold along with their resolved sidebands. We have not plotted all the Zeeman

levels in D5{2. This figure is representative of a single trapped 138Ba`, in which there

are 3 sidebands or bosonic fields, representative of the quantized motion of the atoms

moving along the three spatial directions. Our 1762 nm laser helps to drive these

transitions, which effectively work as a Jaynes-Cummings model. These transitions

can be used for determination of the expected motional occupation number n̄ and
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consequently the heating rate, 9̄n, as well as for cooling below the Doppler limit.

The idea behind measuring n̄ is to look at the ratio of blue sideband and red

sideband strengths. If the atom is cooled to the motional ground state, then there

does not exist a red sideband. If the atom is cooled well and η is small, one can

use the relation Ωrsb{Ωbsb “
a

n̄{pn̄ ` 1q, along with the observation that transition

strength probability P scale as „ | xf | d.E |iy |2 „ Ω2
0, therefore, Prsb{Pbsb “ n̄{pn̄`1q.

From here, one can measure n̄ at different intervals to determine 9̄n. In case the atom

has a high n̄ (>10), the ratio technique becomes difficult, since this ratio approaches

1 and the relative strengths need to be determined with a higher precision. In

such a case, we use a different technique that relies on the the observation that the

Rabi frequencies of the transition on the red, blue or carrier sideband at different

occupation numbers n are all different. We rewrite an earlier equation for convenience

of the reader

Ωn`s,n “ Ω0e
´η2{2η|s|

c

nă!
ną!L

|s|
năpη2q, L|s|

nă
pη2

q “

nă
ÿ

m“0
p´1q

m
´

nă`|s|
nă´m

¯ η2m

m! (5.76)

For carrier and sideband terms, if we choose to keep higher order η terms

Ωn`1,n “ Ω0e
´η2{2η

d

n!
pn ` 1q!L

1
npη2q (5.77)

“ Ω0e
´η2{2η

d

Lnpη2q

pn ` 1q
(5.78)

Ωn,n “ Ω0e
´η2{2

a

Lnpη2q (5.79)

Ωn´1,n “ Ω0e
´η2{2η

c

pn ´ 1q!
n! L1

npη2q (5.80)

“ Ω0e
´η2{2η

c

L1
npη2q

n
(5.81)

For a given thermal distribution, the probability that the atom is in state n is given
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by

pn “
n̄n

pn̄ ` 1qn`1 (5.82)

Therefore, we can write the carrier Rabi flopping as

P p|0yq “
ÿ

n

pncos
2

˜

Ω0e
´η2{2

a

Lnpη2qt

2

¸

(5.83)

One can drive these transitions, and fit them by choosing to sum over a finite large

number, and therefore obtaining n. A similar process can be carried out by flopping

on the blue sideband as well. In the resolved sideband limit, we can also use the red

sidebands to successively take out quantas of motion successively. A simple protocol

would look as follows

Sideband Cooling

1. Doppler cool and prepare state in spin |0y “ |2S1{2,mJ “ ´1
2y.

2. Drive red sideband of |D5{2,m “ ´5{2y via 1762.

3. Pump out of the D5{2 and D3{2 by short pulses, to reduce the number of

scattering events and heating.

4. Optically pump with low 493 nm σ´ power.

5. Repeat from step 2, for a total time of cooling on the order of several

milli-seconds.

We typically do not use sideband cooling during remote entanglement experi-

ments, since they take a long time. However, we use them to cool to the ground

state for taking heating rate measurements. If our atoms exist in a low motional

quanta state, it becomes much easier to estimate n̄ either by the ratio of blue side-

band to red sideband technique or the flopping technique.
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5.3.3 Applications: State detection by electron shelving

Perhaps this is the most important application of the quadrupole transition. State

discrimination and detection is an important component of trapped ion quantum

computing.

A short digression: Before we had the 1762 laser, we were using the Zeeman qubit

states |2S1{2,mJ “ 1
2y and |2S1{2,mJ “ ´1

2y. Our state detection relied on selectively

shining the atom with σ` and σ´. Only if they are in the correct state, they will

scatter on average 2.8 photons. However we collect on average 6-7% of this light,

thereby making this scheme slow since we need to rely on statistics by repeating the

experiment many number of times. This was the primary motivation to purchase

the quadrupole 1762 laser.

In the Zeeman encoding as before, now we can shelve one of the levels, let’s say

|2S1{2,mJ “ ´1
2y Ñ |2D5{2,mJ “ ´1

2y. After this we can simply shine 493 nm (both

σ` and σ´ polarizations) and 650 nm light, which overall forms a closed cycling

transition. Since the D5{2 is a metastable state with 30 s lifetime and isolated from

493/650 nm transitions, it will not get affected by the 493/650 nm beams. We collect

the resulting fluorescence into photo multiplying tubes (or APDs) via imaging optics

and count the number of photons for a given detection time, usually upto 1 ms. If

the atom is in the ´1{2 state, it gets shelved and the atom does not fluoresce while

in the other case it does. We alternate preparation of the atoms in both states and

look at the photon collection statistics for both.

Based on such a histogram 7.5, we set a discriminating photon number to mini-

mize the overlap between the two distributions. The average photon number obtained

during a single experiment is now compared with this discriminator to determine the

state of the atom. This gives a way to perform deterministic readout of the atom.

The fidelity of this readout is limited by the quality of the shelving pulse and back-
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ground scattering into the detector, which ultimately gives a finite overlap between

the photon distributions collected from both the states.

5.4 Two photon Raman coupling

The two Zeeman levels in the ground S1{2 manifold of 138Ba`have the same an-

gular momentum L “ 0, therefore they cannot be driven via single photon dipole

transitions. However they can be coupled via two-photon Raman transitions. They

have been widely used for engineering an effective two-level system from ground-state

sub-levels that lack a convenient direct optical transition [12]. The idea is to drive the

ion with two laser fields whose frequency difference, ω1 ´ω2 equals the qubit splitting

ω0 (plus any small offset required for sideband addressing, dynamical-decoupling, or

2 qubit gate operations):

ω1 ´ ω2 “ ω0 ` µ (5.84)

The two arms of the Raman transition are each de-tuned from the nearest dipole

coupled level by 10s of THz. Because the individual laser beams are far-detuned,

the probability of actually populating this state is vanishingly small. This allows for

a powerful theoretical simplification known as adiabatic elimination, to effectively

convert a three level system Hamiltonian into two level dyanmics with the effective

Rabi frequency

Ω0 “
E1E2

4ℏ2

ÿ

m1

x0| d.Ê1 |m1y xm1| d.Ê2 |1y

∆ (5.85)

Here, |0y and |1y are the qubit states in the Zeeman level, and |m1y is a virtual level

through which we couple the two levels. These two components each should have σ`

or σ´ and π components to effectively deliver a unit of angular momentum required

for the transition.

We use a pulsed 532 nm laser with a repetition rate of 120 MHz (taken by modi-

fying an existing Paladin Compact 355-2000) to drive these two photon transitions.
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Figure 5.9: Raman based 1Q gates: 532 nm beams drive single qubit gates in
the S1{2 levels via Raman transitions. They contain both σ, π light components to
drive effectively ∆m=˘1. Large detunings of 44 and 94 THz prevent populating
the intermediate state.

This qubit splitting in 138Ba`is small enough („ 12 MHz) that it can be bridged di-

rectly by sending two frequency tones on the AOM in the Raman beam path. These

AOMs, driven by an AWG, provide fast control over the frequency, amplitude, and

phase of the light, which in turn defines the parameters of the quantum gate. More

specifically, for a single qubit gate implementation via this scheme, the effective ro-

tation angle is given by θ “
ş

Ω0ptqdt and the phase is set by the differential phase

between the two beams.
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6

Remote entanglement of trapped atomic ions

This chapter is based on the article

“Fast photon-mediated entanglement of continuously cooled trapped ions for quantum

networking” [1, 143].

In this chapter, we discuss the techniques which were used to perform entanglement

between remote atoms in physically separated chambers using the polarization degree

of freedom in a photon. As we have seen earlier, some of the heralded entanglement

techniques rely on having the following conditions [144]:

1. A specific degree of freedom of the atom (usually spin) entangled with a specific

degree of freedom of the photon (frequency, time or polarization).

2. Interfering the photons on a beam splitter and erasing the information about

the parent emitter of the photon.

3. Detecting single-photon clicks and projecting the atoms into an entangled state.

In the following paragraphs, we describe ideas for performing and heralding remote

entanglement. The process starts by exciting an atom to a short-lived state, followed

by spontaneous or cavity-mediated emission. These photons, now entangled with

specific quantum degrees of freedom of the atom, are collected and routed to a beam

splitter. If the photons are indistinguishable, the beam-splitter can erase the origin

of the photon wave packet. Additionally, when these photons are detected after the

beam splitter in a specific pattern, they post-select the atom’s state and leave them

entangled. In the following notation, the first ket denotes the state of the first atom
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and the second ket denotes the state of the second atom. We explicitly write the

tensor product symbol to delineate each atom. A generalized remote entanglement

scheme based on two photonic clicks can be summarized in the following steps:

1. Prepare two atom which are to be entangled in a well-defined quantum state

|Ψ1y b |Ψ2y.

2. Excite both atoms to a short lived state |Ψi Ñ eiy.

|Ψy “ |e1y b |e2y (6.1)

3. Collect photon emission (νi) from each atom. Assume that the atom, starting

from the state |e1, e2y can decay into two different atomic states pϕ1, ϕ2q. Since

the emission conserves angular momentum and energy , and if we are able to

perfectly track the states of the atom and the photon, the resulting pair would

be perfectly correlated i.e. entangled. These collected atom-photon pairs are

then directed into each port of a beam splitter, denoted by the subscript (A,B)

|Ψy “ p|ϕ1, ν1y ` |ϕ2, ν2yqA b p|ϕ1, ν1y ` |ϕ2, ν2yqB

“ pa:

A,ν1 |ϕ1y ` a:

A,ν2 |ϕ2yq b pa:

B,ν1 |ϕ1y ` a:

B,ν2 |ϕ2yq

“ a:

A,ν1a
:

B,ν1 |ϕ1y b |ϕ1y ` a:

A,ν1a
:

B,ν2 |ϕ1y b |ϕ2y

` a:

A,ν2a
:

B,ν1 |ϕ2y b |ϕ1y ` a:

A,ν2a
:

B,ν2 |ϕ2y b |ϕ2y

(6.2)

Here ν1, ν2 refers to the emitted photon’s two degrees of freedom. The sub-

scripts (A,B) refer to the two different ports of a beam splitter also labeled as

(A,B). a:

A,ν1 represents the creation of a photon in port A with the photonic
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state ν1 Now, note that Eqn 6.2 can be refactored as follows:

|Ψy “
1

?
2

´

pa:

A,ν1a
:

B,ν1 ` a:

A,ν2a
:

B,ν2qp|ϕ1y b |ϕ1y ` |ϕ2y b |ϕ2yq

`pa:

A,ν1a
:

B,ν1 ´ a:

A,ν2a
:

B,ν2qp|ϕ1y b |ϕ1y ´ |ϕ2y b |ϕ2yq

`pa:

A,ν1a
:

B,ν2 ` a:

A,ν2a
:

B,ν1qp|ϕ1y b |ϕ2y ` |ϕ2y b |ϕ1yq

`pa:

A,ν1a
:

B,ν2 ´ a:

A,ν2a
:

B,ν1qp|ϕ1y b |ϕ2y ´ |ϕ2y b |ϕ1yq

¯

(6.3)

In Eqn 6.7, we readily recognize that each term of the atoms-photon pair are

Bell states. This means that if we can measure the photons in a Bell basis, we

can herald the atoms in an entangled state.

4. Use a beam-splitter along with appropriate photonic detectors to perform a

Bell-basis measurement. Here the beam splitter transformation is given by

a:

A Ñ
a:

C`a:

D?
2 ; a:

B Ñ
a:

C´a:

D?
2 . Now we can write transformed state as follows:

|Ψy “
1
2

´

pa:2
C,ν1 ` a:2

C,ν2 ´ a:2
D,ν1 ´ a:2

D,ν2qp|ϕ1, ϕ1y ` |ϕ2, ϕ2yq

`pa:2
C,ν1 ´ a:2

C,ν2 ´ a:2
D,ν1 ` a:2

D,ν2qp|ϕ1, ϕ1y ´ |ϕ2, ϕ2yq

`2pa:

C,ν1a
:

C,ν2 ´ a:

D,ν1a
:

D,ν2qp|ϕ1, ϕ2y ` |ϕ2, ϕ1yq

`2pa:

C,ν2a
:

D,ν1 ´ a:

C,ν1a
:

D,ν2qp|ϕ1, ϕ2y ´ |ϕ2, ϕ1yq

¯

(6.4)

The first two terms arise from Hong-Ou Mandel interference [145]. Two indis-

tinguishable photons coming into the same mode of a beam splitter always exit out

of the same modes in the splitter. In most cases, we are not able to detect two

indistinguishable photons coming in at the same time. However, we can very easily

detect photons when they come out on the opposite exit modes or ports, or when two

different photons come out of the same port. In such a case, the atoms get entangled

in a state of the form |ϕ1, ϕ2y ˘ |ϕ2, ϕ1y.

To herald states of the form |ϕ1, ϕ1y ˘ |ϕ2, ϕ2y, we simply perform the measure-

ment in a different basis. For example, we can use a transformation which mixes
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the two photonic states together a:
ν1{a:

ν2 Ñ
a:

ν1`a:

ν2?
2 {

a:

ν1´a:

ν2?
2 , before using a photon

distinguishing beam splitter. Usually, the atomic state is encoded in the spin degree

of freedom, so |Ψy “ α |0y ` β |1y. For photons, we have the choice of using different

encoding schemes as already discussed in Chapter 2. We start by choosing polar-

ization as the preferred degree of freedom since passive linear optical components

like wave plates and polarizers can be used to easily control the polarization state.

The next few sections are taken from the paper [1] and are intended to motivate the

need to consider other forms of photonic encoding instead of polarization. They are

written in a summarized fashion and we refer the reader to [143] for a much more

detailed description.

6.1 Polarization encoding: The Good and the Bad

Atoms naturally emit light of specific polarization, which makes the polarization

scheme quite attractive. In our case, we use a singly ionized barium atom to emit sin-

gle photons of different polarizations. The figure 6.1 shows the relevant excited state

of 138Ba`and its two possible decay channels. They carry either no angular momen-

tum, corresponding to a π transition, or one unit angular momentum, corresponding

to a σ transition. Accounting for the appropriate coupling strengths corresponding

to the two decay channels, we can write out the joint atom-photon state as:

Ψatom´photon “

c

2
3 |0σ`

y `

c

1
3 |1πy (6.5)

Now, if one collects these single photons perpendicular to the magnetic field into a

single mode fiber, these specific light fields uniquely map to its orthogonal polariza-

tion state such that the Clebsch-Gordan coefficients cancel out in exactly the opposite

way to yield a perfectly balanced maximal atom-photon entangled state [146, 147].

This is due to the fact that we can write the polarization of the emitted photons as:

|kπy “ ´sinpθq |θ̂y and |kσy “ eiϕ{
?

2pcos θq |θ̂y ` i |ϕ̂yq, and the additional
?

2 factor
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Excited State

VH

Ground State

Figure 6.1: Polarization encoding: The excited state after decay can emit a σ
or a π photon conditional on the state that it ends up in. This generates
atom-photon entanglement.

from the σ polarization cancels out the Clebsch-Gordon coefficient.

Ψatom´photon “

c

1
2 |0Hy `

c

1
2 |1V y (6.6)

.

Now, if we collect two such photons from two atoms and interfere on the beam

splitter, we can follow the same treatment as we did before in Eqn 6.7, keeping in

mind that tν1, ν2u Ñ tH, V u and tϕ1, ϕ2u Ñ t|0y , |1yu. Given this state mapping,

Eqn 6.7 can be written as:

|Ψy “
1
2

´

p|HC , HCy ` |VC , VCy ´ |HD, HDy ´ |VD, VDyqp|00y ` |11qy

`p|HC , HCy ´ |VC , VCy ´ |HD, HDy ` |VD, VDyqp|00y ´ |11yq

`2p|HC , VCy ´ |HD, VDyqp|01y ` |10yq

`2p|HC , VDy ´ |HD, VCyqp|01y ´ |10yq

¯

(6.7)

So if we use a polarizer after the beam splitter, and detect two photons of different
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Figure 6.2: Experimental setup for performing remote entanglement
between two co-trapped 138Ba`atoms in Cleo. Two in-vacuum aspheres
collimate light emitted from two co-trapped atoms. An out-of-vacuum asphere
couples this light into the two ports of a fiber beam splitter. One fiber arm of the
splitter contains fiber paddles acting as waveplates to compensate for the relative
birefringence difference between the two input ports. At the output ports we have
the Bell state analyzer consisting of waveplates, prisms and avalanche photodiodes
to measure single photons in any polarization basis.

polarizations, we will herald Bell states represented by the last two terms in the

Eq. 6.7, |Ψy “ |01y ˘ |10y.

We perform such an experiment in our recently built Cleo system featuring state-

of-the-art light collection from atoms via the use of in-vacua high NA (0.8) asphere

[148]. Our objective was to obtain the highest rate of entanglement of atoms using

polarization-encoded photons. For this purpose, we used the two in-vacuum aspheres

of Cleo to collect single photons from two co-trapped barium-138 atoms. Each as-

phere was aligned to collect single photons from one of the two atoms. The field of

view is sufficiently small to have negligible cross fiber coupling. Fig 6.2 shows the

experimental setup and the protocol.
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Protocol: Polarization Entanglement

1. Using optical pumping with 493 nm σ´ and 650 nm light, prepare each

atom in |2S1{2,mJ “ ´1
2y.

2. Excite atom with a 3 picosecond, σ` polarized 493 nm pulse to

|2P1{2,mJ “ 1
2y

3. The excited state has a lifetime of „8 ns. Using the aspheres, collect

single photons into the two ports of a fiber beam splitter.

4. Detect two orthogonally polarized photon clicks after the beam splitters.

The click patterns and the states are given as in Table 6.1.

Table 6.1: Heralding click pattern

APD Clicks Atom state
(1,2) or (3,4) |Ψ´y “ 1?

2p|01y ´ |10yq

(1,3) or (2,4) |Ψ`y “ 1?
2p|01y ` |10yq

Before we proceed to atom-atom entanglement, we first characterize the atom-

photon state. This is performed by doing a joint state detection of the atom and

the photon in different basis. We take correlations by detecting the state of the

atom and detecting the photons in {H,V} polarization basis. For an ideal corre-

lation, turning the polarization state of the photon would concurrently turn the

atomic state. Using quarter and half waveplates after the beam splitter, we change

the polarization of the photons, which are then detected by avalanche photo-diodes

in (H,V) basis by using high extinction ratio polarizing beam splitters. Immedi-

ately after, we detect the atomic state via state selective fluorescence as described in

Chapter 5. We also perform “coherence” measurements by detecting the photons in

the |H ` V y {
?

2, |H ´ V y {
?

2 basis followed by detecting the state of the ion after

a 532 nm π{2 analysis pulse with a phase that we scan. The coherence measure-
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Figure 6.3: Figs. (a) and (c) are correlation measurements between the atom and
the photon states as the half waveplate is turned. They are fitted via non-linear
least squares fitting using offset sinusoidal functions resulting in fitted contrasts of:
(a) 0.979`0.009

´0.009 red, 1.00`0.0
´0.03 blue and (c) 0.989`0.011

´0.011 red, 0.972`0.017
´0.017 blue. Figs. (b)

and (d) measure the atom state after a π{2 Raman pulse with variable phase ϕ
conditioned on measuring the photons in the diagonal basis. Least squares fitting
for the plots on the left give fitted contrasts of (b) 0.964`0.013

´0.013 red, 0.98`0.012
´0.012 blue

and (d) 0.963`0.01
´0.01 red, 0.948`0.013

´0.013 blue.

ments are performed with the photon collected in a short window of 3 ns to avoid

unwanted phase evolution of the atom-photon state after the spontaneous emission

of the photon. These measurements, known as correlations and coherences, help in

bounding the ion-photon fidelity. The ion-photon fidelity bounds are calculated to

be 99.1p1.0q% ą FA ą 98.1p1.4q% and 99.1p0.7q% ą FB ą 96.8p0.6q% [143].

6.1.1 Entanglement rate: The Good

Once the atom-photon states are characterized, we proceed to generate Bell states

of the atoms. Photon detection according to 6.1 projects the atoms into the corre-

sponding Bell states, and are consequently analyzed by relevant analysis pulses and
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atom state detections. Since we collect photons using a state-of-the-art, in-vacuum,

0.8 NA asphere, we were able to obtain the highest entanglement rate ever across

quantum memories in any platform mediated by photons.

We can calculate the obtained entanglement rate as R “ 1
2fpApB where f is

the frequency at which we attempt entanglement generation, and pA, pB are the

probabilities that single photons emitted from each atom A,B are collected and

detected. A complete cycle of the protocol given earlier takes 1 µs, so our attempt

rate is 1 MHz. However, each time these atoms absorb and emit a single photon,

they undergo recoil, and over many tries they start heating up roughly at the rate

of 0.1 quanta per attempt. Photon-recoil induced heating is a problem, since fiber

coupling drops drastically and the rate suffers even more. We circumvent this by

co-trapping an 171Yb`atom and use it for continuous sympathetic cooling, so that

we can perform uninterrupted entanglement attempts at f “ 1MHz.

The probability of light collection gets reduced by a variety of losses at each step

of the process. For this experiment, we pumped and excited with a probability of

96(2)%. 493 nm photons are emitted 73% of the time of which we collect 19.5% (with

a rod clipping of 3%) along with a 90% optical transmission loss through the asphere.

30% of these collected photons are fiber coupled which are then detected with a 71%

detection efficiency by our APDs. This gives a net success probability of 2.5(3)%,

but we observe slightly lower numbers which we attribute to additional surface losses

from collection optics and variations in fiber coupling during the experiment. For our

system we get, pA and pB as 2.3(1)% and 2.2(1)% respectively, for a net entanglement

rate R = 250 s´1.

This is exactly why polarization encoded photons are good: it is easy to generate

atom-photon entangled pairs by simply exciting an atom and looking at different

decay paths with different selection rules to give photons of different polarizations.

Short decay times of nanoseconds along with simultaneous emission of horizontally
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and vertically polarized photons, along with their easy manipulation make it a great

choice for having high rates of entanglement.

6.1.2 Entanglement fidelity: The Bad

We can perform ion-ion measurements to bound the fidelity of the entangled

state. First, we look at the phase of the joint state:

|Ψy “
`

|0Hy ` eipkHxH ´kV xV q
|1V y

˘

b
`

|0Hy ` eipk1
Hx1

H ´k1
V x1

V q
|1V y

˘

(6.8)

Now we make the following reasonable assumptions:

• The wavenumbers for the two H photons are approximately the same for the

two atoms i.e. kH « k1
H . This is because the magnetic field difference between

the two atoms is small „ 1kHz.

• The difference in path lengths of the photons emitted by two different atoms

is the same for both polarizations i.e. xH ´ x1
H « xV ´ x1

V . This is because

the birefringence of standard fibers are « 10´7. This makes the approximation

correct to 10´7.

We know that the terms that matter in Eq. 6.7 have two photons of different po-

larizations, so we want to look at the terms with photons of polarization |H,V y or

|V,Hy. This along with the assumptions before makes the effective phase difference

due to photon propagation as:

|Ψy 9 |01y ˘ ei∆k∆x
|10y (6.9)

We compute this term to be „2ˆ10´9, which can be safely ignored. In addition to

these, there is a time-dependent phase in the Bell state due to the magnetic field

difference. This is because the energy splitting between |01y and |10y is proportional

to the magnetic field difference between the two atoms. This phase evolution starts

after the second photon detection. Due to this, all common mode magnetic field

noise is canceled out and it is expected to have a longer coherence time than two
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uncorrelated Zeeman qubits. Indeed, we measured an extended Bell state coherence

time of 38(13) ms.

Since we entangle atoms which are co-trapped and our laser systems cannot

individually address them, we can only perform global operations on our atomic

qubits. This restricts us to only being able to bound our entanglement fidelity. We

use population measurements and parity scans to identify these bounds. Akin to

the atom-photon correlation, atom-atom populations are joint measurements of the

state of the atom. The parity of the two-atom state reflects the probability of the

atoms’ spins being aligned or anti-aligned and is defined as:

P “ p00 ` p11 ´ p01 ´ p10 (6.10)

where each of the pij denotes the probability of the two atoms to be in the i,j th state

respectively. We perform our parity scans on the Bell states |01y ˘ |10y. A global

analysis π{2 pulse with zero phase converts

|01y ` |10y ÝÑ |00y ´ |11y,

while leaving

|01y ´ |10y

unchanged. A second π{2 pulse with phase ϕ then implements

|01y ` |10y ÝÑ ´ cosϕ p|01y ` |10yq ` sinϕ p|00ye´iϕ
´ |11yeiϕ

q.

By measuring the parity observable in Eq. 6.10 as we scan ϕ, we observe that |01y ´

|10y has a constant parity P “ `1, whereas |01y ` |10y oscillates between `1 and

´1. Together with the population data, these parity scans establish a lower bound

on our fidelity of ą 93.7p1.3q% [149].

There are a variety of error sources that limited this experiment to a lower fi-

delity. The two entangled ions have a coherence time of 32 ms due to suppression of
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Figure 6.4: The top figure shows the population of the atoms among all the spin
states, which are |ÓÓy ” |00y , |ÓÒy ” |01y , |ÒÓy ” |10y , |ÒÒy ” |11y. The bottom
figure shows parity scans for the Bell state |01y ` |10y. The red curve is scanning
the phase of a single π{2 pulse while the blue curve is scanning the phase of a π{2
pulse after a π{2 rotation with zero phase. The blue data points are fit to a
sinusoid using least squares technique which gives a fitted contrast of 0.925(0.017)
while the red data points give a fitted contrast of 0.027(0.018).

common-mode noise, which corresponds to an error of 0.3(1)%. There are additional

small error sources as well; for example, temporal mismatch of the photons, dou-

ble excitation of the atom, dark count on the detector, and imperfect beam splitter

(49:51 in-fiber beam splitting) which contributes to net error <0.25(2)%. However,

the most important point is to realize that the bulk of the errors come from an imper-

fect ion-photon state, contributing about 2.9(1.6)% error. This error is calculated by

considering ion-photon correlation measurements. We hypothesize that some of this

error comes from the polarization channel which we do not completely understand,

for more details see [149].
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As the photon passes through the fiber, we obtain non-trivial time-varying unitary

transformations which impart a relative phase between the Bell states. This can be

tracked and compensated for by performing polarization rotations using wave plates

just before detecting the single photons. However, there are atleast two specific cases

in our experimental system which can cause unavoidable polarization induced fidelity

losses.

1. If the light collection into the fiber is not performed exactly in the plane per-

pendicular to the magnetic field, then the preferred mapping of polarizations

i.e. |σ`y Ñ |Hy and |πy Ñ |V y does not hold true anymore. This leads to

polarization mixing errors and directly impacts the atom-photon entanglement

fidelity.

2. The emitted photon has to travel through the vacuum window before it gets

collected into the fiber. If the window’s birefringence varies across its surface,

the desired polarization mapping can fail: a photon traveling through different

spots on the window experiences different polarization rotations. When inte-

grated over the entire window, this can cause irrecoverable fidelity loss since we

are tracing out the photon’s polarization state at the end. The window’s spa-

tial retardance was measured to be small before it was installed, on the order

of 10´1 degrees as seen and described in Fig. 6.5 and this does not completely

account for the 2.9% error we attribute to the ion photon state infidelity. How-

ever, it may be possible that clamping the windows onto the vacuum chamber

causes stress induced birefringence which causes the afore-mentioned effects

[150].

While it is possible to fix or reduce errors from misalignment by performing atom-

photon correlations and doing iterative adjustments on the photon collection imaging

system, it is challenging to fix polarization scrambling from the vacuum windows. A

possible solution may be to map the birefringence of the mounted window and use a
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Figure 6.5: Window birefringence measurement: The retardance in degrees
is plotted as a function of the pixel coordinates. When the windows were not
mounted, we measured an average window retardance of 0.6 and 0.5 degrees
respectively. This measurement was performed by placing the window between two
crossed polarizers and shining a large 493 nm beam to cover the entire window.
The image was then analyzed using Jones calculus formalism to calculate the
retardances.

custom metasurface optic to cancel that out [151]. Another option would be to choose

a different material for the glass window with lower stress induced birefringence, for

example SF-57 [152]. The final option is to choose a different photon encoding scheme

which is insensitive to these errors. We can use frequency encoding which is usually

resistant to group velocity dispersion as it passes through the glass medium, but that

may introduce small timing issues [51]. We can also use time-bin encoding which

encodes information in the timing of a fixed polarization photon pulse. This would

allow us to filter out wrong polarizations to obtain a higher fidelity at the cost of a

rate trade-off. In the context of a long-distance quantum network, using polarization

encoding means there will be a need to perform frequent polarization calibration

which can limit the connectivity rate of the quantum network [153]. For that reason,

we study an encoding scheme of using time-binned photons in the next chapter. We

will talk about our results from time-bin mediated entanglement experiments which
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circumvent polarization errors and offer a path to higher fidelities.
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7

Time-bin mediated remote entanglement

This chapter is based on the articles:

“High-fidelity remote entanglement of trapped atoms mediated by time-bin photons”

and “Entanglement fidelity limits of photonically-networked atomic qubits from recoil

and timing” [154, 155].

The technique of using the photon’s time degree of freedom for remote entangle-

ment purposes was first suggested by Barett and Kok [48] and has been demonstrated

in solid state quantum memories [108, 156, 157]. The scheme relies on the existence

of an excited state which couples strongly to only one of the qubit states. Unlike in

the polarization scheme where we had simultaneous spontaneous decay which gen-

erated two photons at the same time, here the atom is excited twice, thereby having

two windows of time where the photon can be emitted, thus the time-binned pho-

tons. At the same time, this scheme is akin to the polarization case, in a sense that

it also relies on double heralding which makes it resistant to most experimental error

sources [158]. Assuming the excited state only decays to the |0y level, the proto-

col below shows the steps required for generating time-bin entanglement with the

spin-state of the photon.
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Protocol: Time-Bin Entanglement Generation

1. Initialize qubits in |0y state.

2. Apply Hadamard gates to create superposition p|0y ` |1yq{
?

2.

3. Apply excitation pulse to transfer |0y to a short lived state |ey.

4. Collect any spontaneous emission.

5. Swap populations between |0y Ø |1y using a π pulse.

6. Excite |0y to |ey again and collect emission.

7.1 Atomic level structure for time-bins

We are now concerned with an encoding scheme in 138Ba`that permits the Barrett-

Kok protocol. Fig. 7.1 shows the level structure of 138Ba`. If we had the ability

to image 455 nm photons, it would be appropriate to use one of the edge Zeeman

states in P3{2 as the excited state, since they decay only to a specific Zeeman level

in S1{2 due to polarization selection rule. Since our imaging system and photon col-

lection optics are optimized to operate at 493 nm, the excited state is chosen to be

|ey “ |2P1{2,mJ “ 1
2y.

We use an optical qubit with the qubit states defined as |0y “ |2S1{2,mJ “ ´1
2y

and |1y “ |2D5{2,mJ “ ´1
2y [159]. Our narrow-linewidth 1762 nm laser drives coher-

ent operations between the |0y and the |1y states. Such an encoding satisfies Barrett-

Kok’s requirement, since the excited state does not couple to the |1y state [48]. The

excited state |2P1{2,mJ “ 1
2y has two decay pathways emitting a σ or a π photon as

we had seen earlier in the polarization encoding scheme. The branching ratio to the

S1{2 manifold is 73%. In addition 2/3 of these decays return the population to |0yq for

a net branching ratio of β “ 49%. We reject events with decays to the other ground

state (|2S1{2,mJ “ `1{2y) via a π-polarized photon with a polarization filter, as seen
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Figure 7.1: Energy levels in 138Ba`

in Fig. 7.2. Decay to the 2D3{2 state (27% branching ratio) by emission of a 650 nm

photon is rejected through spectral filtering as well as chromatic shifts resulting in

zero fiber coupling. To measure the state of the atom we perform state-dependent

atom fluorescence with a detection time of 1 ms. Histograms of fluorescence counts

are shown in Fig. 7.5 for Alice. To differentiate between bright and dark states,

we use a threshold of 2.5 counts and 10.5 counts for Alice and Bob, respectively.

The different thresholds are due to the fact that the atom state in Bob is detected

through the high N.A. side while that for Alice is via the low N.A. side. Employing

this method, we achieve a state preparation and measurement (SPAM) fidelity ex-

ceeding 99.5% for both Alice and Bob with the residual SPAM error dominated by

fluctuations in the 1762 nm operations.
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Figure 7.2: Levels for time-bin photon generation: Since we can collect 493
nm photons, we choose |0y ” |S1{2,mJ “ ´1{2y with 493 decays from P1{2. We
reject events where the atoms end in |S1{2,mJ “ 1{2y by filtering out π photons
that get coupled into the fiber. Since P1{2 does not decay to D5{2 we define
|1y ” |D5{2,mJ “ ´1{2y. The figure on the right shows that with appropriate
definition we can have a level structure as the Barrett-Kok scheme demands.

The experimental setup is completely identical to the previous experiment, since it

already had polarization control elements for ion-photon analysis. In this experiment,

we couple the same σ and π photons as in the polarization scheme. However, we

choose to analyze only the data corresponding to the H photons, while the V photons

are completely ignored. This setup is now represented in Fig. 7.3. Similar to before,

we collect 493 nm photons emitted from remote trapped atoms into single-mode

optical fibers, but now they are entangled in their time of emission.

7.2 Entanglement protocol

We remotely herald entanglement as described below, and shown in Fig. 7.4.

First, we use 493 nm and 650 nm laser beams to Doppler-cool each atom. We

follow that with state preparation via optical pumping into the |0y state. This is

done by turning on the σ´ polarized 493 nm beam together with the 614, 650 nm

beams addressing all levels in D3{2, D5{2. This incoherent process, prepares a pure
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APD    - Avalanche Photo Detector 
P          - Polarizer
PMT    -  Photo Multiplying Tube
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APD 1

APD 2

NA 0.6Ion state
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Alice

Bob NA 0.8

P
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Figure 7.3: Experimental setup: Our experimental setup is identical to the
setup as before, except now we collect photons from two separate chambers: one
using 0.8 NA in vacuum aspheres and another using 0.6 NA out of vacuum
objectives. Instead of detecting two different polarizations we now detect only
horizontal polarizations corresponding to σ` decays.

state, by populating only a single level. After this, we apply a π{2 pulse using 1762

nm light to prepare the coherent superposition state 1?
2p0q ` 1qq [160]. At time te,

we use a single 493 nm circularly polarized pulse of 3 ps duration to drive |0y to

the excited state |ey with a probability Pexc „ 0.80 (excitation probability limited

by laser power). Spontaneous emission from |eyq produces a single 493 nm photon

wavepacket that is exponentially distributed over time according to a decay with

lifetime of τR “ 7.85 ns [161]. The ideal unnormalized state of each ion q and its

collected photon mode is now

a

1 ´ pq |0q0eyq `
?
pqe

ipϕqe`ϕoptq
|0q1eyq ` |1q0eyq (7.1)

where |1ey (|0ey) denotes the presence (absence) of a photon in the first (early)

time-bin and pq is the probability a single photon has been collected. The phase

ϕqe “ ∆k ¨rqpteq`ϕ˚
qe includes the position rqpteq of ion q. This position is measured

in the trap frame, with the origin of the coordinate system set at the trap center,

at time te of the early time-bin. The phase also includes the wavevector difference

∆k “ k1 ´ k, which is the difference between the excitation pulse wavevector k1 and

that of the emitted photon k (both of magnitude k). The small random phase ϕ˚
qe
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Figure 7.4: Experimental protocol: We follow the steps in each of the boxes
shown above. (1) We start by pumping with 493 nm, 650 nm and 614 nm light. (2)
A coherent equal superposition is created with 1762 nm light. (3) The ground state
is excited with a 3 ps 493 nm pulse of light and any emission is collected. (4) The
qubit levels are swapped. (5) The ground state is excite again and any emission is
collected. (6) A π{2 analysis pulse with a variable phase ϕ is applied. (7) The error
state is shelved to |D5{2,mJ

“ 1{2y. (8) First the qubit |0y state is detected by
shining 493 nm, 650 nm light. (9) Then the error state is deshelved. (10) The error
state is detected and the trial event is discarded if an error hit is found.

92



0 5 10 15 20 25 30
Photon counts

100

101

102

103

104

Oc
cu

rre
nc

es

Bright
Dark

Figure 7.5: State detection histogram: Here we plot the histogram of single
photons detected during a detection time of 1 ms in Alice. State discrimination
threshold based on average photon counts obtained in this detection time is set to
2.5.

accounts for the narrow distribution of emission times and is discussed later, while

ϕopt is an optical phase that gets picked up from the excitation and collection path.

To generate the second (late) time-bin photon, the populations in |0yq and |1yq are

swapped with a 1762 nm π-pulse, then at time tl the |0yq state is again excited to the

|eyq state. With probability pq, there is now a single-photon time-bin qubit entangled

with its parent atom qubit, ideally in the state

eiϕoptpeiϕqe |1qy |1e0lyq ` eiϕql |0qy |0e1lyqq (7.2)

where |nenlyq denotes a state of ne (nl) photons in the early (late) time-bin from

atom q. Here we pull out the global phase ϕopt and ignore it from the rest of the

calculations by assuming that the excitation and collection optical path lengths are

stable between the early and late excitations. The time-bin photons from Alice

and Bob, as seen in Figure 7.6, are then directed to a non-polarizing 50:50 fiber

beamsplitter (BS), which erases their “which-path" information through Hong-Ou-

Mandel interference [145]. Subsequent detection of early and late photons ideally
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Figure 7.6: Histogram of arrival times of the late and early photons totaling
11435 events. Early and late time bins are separated by 6048 ns.

projects the ions into a Bell state [51, 155]

Ψ˘
“ |0A1By ˘ eiϕ

|1A0By (7.3)

where the phase is ϕ “ pϕAe ´ ϕBeq ´ pϕAl ´ ϕBlq. The Ψ` pΨ´q state is heralded by

early and late detections on the same (opposite) BS output channels.

The stability of this phase factor is of paramount importance. If this phase starts

to vary, we will get Bell states with arbitrary relative phases. When averaged over

such states, we will get completely mixed states.

7.3 Entangled phase state stability

Multiple excitation times in the time-bin protocol or even the distribution of

emission times within a single time-bin can lead to entanglement between the photon

qubit and motion of the each atom from atomic recoil. We use a slightly different
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notation than the one on the paper, for the sake of clarity for the reader. We work

in the density matrix formalism for calculating the effects of recoil. The initial state

of atom q P pA,Bq, including its time-bin photon emission modes and motion is

ρq “
p|1y ` |0yqqpx1| ` x0|qq

2 b |0e0lyq x0e0l|q b Mq (7.4)

where |NeNlyq denotes Ne (Nl) photons emitted in the early (late) time bin. The

initial motional density matrix Mq is expressed as a thermal state in the basis of

coherent states [162]:

Mq “
ź

i

1
πn̄qi

ż

d2αi|αiyxαi|e
´|αi|2{n̄qi (7.5)

where n̄i is the average thermal motional quantum number in direction i.

For now, we drop the index q and also do not worry about the photonic occupation

numbers. This is because we are now interested in looking at the effect of recoil on

the phase of the atom. Then we can rewrite the state of the atom as

ρ “
p|1y ` |0yqpx1| ` x0|q

2 b M (7.6)

We define the projectors into |0y and |1y as:

P0 “ |0y x0| ; P1 “ |1y x1| (7.7)

These operators are introduced, since after emission and detection of the photon,

the atoms will be projected into a specific state. We also notice that the phase we

were trying to keep track of earlier as ei∆k¨rptq is actually the phase change due to

a recoil of the atom during a photon absorption/emission event. This amounts to

a displacement of the initial phase space distribution of the atom [163]. Note that,

as we had defined earlier, rptq is the position of the ion measured in the trap frame
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with the coordinate origin set at the trap center. We are able to use this inertial

frame by assuming that the trap is stable relative to the 493-nm laser light between

the early and the late excitations. Therefore we can also rewrite this phase in terms

of the coherent displacement operator D in phase space [162]

ei∆k¨rptq
“ Dpiηq (7.8)

Here, η is the Lamb-Dicke parameter given as η “ ∆k ¨ r0, where r0 is the spread

of the atomic wavefunction in its ground state. η is a measure of how well localized

the atom is compared to the wavelength of light interacting with it. After the first

excitation and emission, assuming that the photon deterministically interacts with

the atom, we can write the operator that acts on the initial density matrix as

U1 “ P0Dpiηq ` P1 (7.9)

Clearly, this shows that the atom gets a kick when it is in the state |0y. This is

followed by free evolution for a time τ during which we also swap the two qubit

states. This would be then represented by the unitary

U2 “ e´iHτX (7.10)

Here, the Hamiltonian H “
ř

i ωipn`
1
2q describes the free evolution of the atomic

motion in the trap with harmonic frequencies ωi and phonon occupation numbers ni

in all three dimensions. The Pauli spin-flip operator X “ |0y x1|`|1y x0| describes the

qubit swap between emission attempts. Following this we have the late excitation,

which is again the same as U1

U3 “ U1 “ P0Dpiηq ` P1 (7.11)

Hence the final state, after all of these steps is

ρf “ U3U2U1ρpU3U2U1q
: (7.12)
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We can compute the product of the operators to get

U3U2U1 “ pP0Dpiηq ` P1q e´iHτX pP0Dpiηq ` P1q (7.13)

“ pP0Dpiηq ` P1q e´iHτ
p|0y x1| ` |1y x0|q pP0Dpiηq ` P1q (7.14)

“ pP0Dpiηq ` P1q e´iHτ
p|1y x0| Dpiηq ` |0y x1|q (7.15)

“ p|0y x1| Dpiηqe´iHτ
` |1y x0| e´iHτ Dpiηqq (7.16)

Here we have used the fact that motional and spin part of the Hilbert space commute

with each other. Now we can apply this to the initial density matrix to get

U3U2U1ρ “ p|0y x1| Dpiηqe´iHτ
` |1y x0| e´iHτ Dpiηqq

p|1y ` |0yqpx1| ` x0|q

2 b M

(7.17)

“ p|0y x1| ` |0y x0|qDpiηqe´iHτ
` p|1y x0| ` |1y x1|qe´iHτ Dpiηq b M{2

(7.18)

Also on the other side, we have the adjoint of this operator

pU3U2U1q
:

“ peiHτ Dp´iηq |1y x0| ` Dp´iηqeiHτ
|0y x1|q (7.19)

Finally, then we can multiply all terms together to get

ρf “ U3U2U1ρpU3U2U1q
: (7.20)

“ rp|0y x1| ` |0y x0|qDpiηqe´iHτ
` p|1y x0| ` |1y x1|qe´iHτ Dpiηqs b M{2 (7.21)

b reiHτ Dp´iηq |1y x0| ` Dp´iηqeiHτ
|0y x1|s (7.22)

“

ż

d2α
e´|α|2

2πn̄ rp|0y x1| ` |0y x0|qDpiηqe´iHτ
|αy ` p|1y x0| ` |1y x1|qe´iHτ Dpiηq |αys

(7.23)

b rxα| eiHτ Dp´iηq |1y x0| ` xα| Dp´iηqeiHτ
|0y x1|s (7.24)

Now we are can finally trace over the motional part, by looking at the diagonal
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components of the motional subspace:

ρf “

ż

d2α
e´|α|2

2πn̄ r |0y x0| xα| eiHτ Dp´⟩ηqDp⟩ηqe´iHτ
|αy ` (7.25)

|1y x1| xα| Dp´⟩ηqeiHτe´iHτ Dp⟩ηq |αy ` (7.26)

|1y x0| xα| eiHτ Dp´iηqe´iHτ Dpiηq |αy ` (7.27)

|0y x1| xα| Dp´iηqeiHτ Dpiηqe´iHτ
|αys (7.28)

The diagonal terms simplify to unity, however the off diagonal terms need to be

calculated. To compute these matrix elements we first state some properties of

coherent states. Notice that,

e´iHτ
|αy “ |αe´iωτ

y , xα| eiHτ
“ xαeiωτ

| .

and,

xα| e
i
ℏHτ Dp´iηq e´ i

ℏHτ
“ xαeiωτ

| D
`

´iη e´iωτ
˘

.

Now consider the term,

ρ10
f “

ż

d2α

2πn̄ e´
|α|2

n̄ xα| eiHτ Dp´iηq eiHτ Dpiηq |αy . (7.29)

Using the displacement-product identity

Dpλ1qDpλ2q “ e
1
2 pλ1λ˚

2 ´λ˚
1 λ2q Dpλ1 ` λ2q,

we set λ1 “ ´iη e´iωτ , λ2 “ iη to get

Dp´iη e´iωτ
qDpiηq “ e´ iη2 sinpωτq D

`

iηp1 ´ e´iωτ
q
˘

.

We also look at this result for writing the displacement operator in a coherent state

basis

xβ|Dpλq |αy “ exp
”

´1
2 |λ|

2
` λα˚

´ λ˚ β ` β˚ α
ı

.
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Finally, we can compute the cross terms of the final density matrix

ρ10
f “ “ e´ iη2 sinpωτq

ż

d2α

2πn̄ exp
”

´
|α|2

n̄
´ 1

2

ˇ

ˇiηp1 ´ e´iωτ
q
ˇ

ˇ

2
` iηp1 ´ e´iωτ

qα˚

´ p´iηp1 ´ eiωτ
qq pαeiωτ

q ` α˚e´iωτ α
ı

(7.30)

We switch to α “ x` iy, complete the square in x, y, and use the Gaussian integral

result
ş

e´apx´bq2
dx “

a

π{a to find that

ρ10
f “ 1

2 exp
“

´p2n̄ ` 1q η2
p1 ´ cosωτq

‰

exp
“

i η2 sinpωτq
‰

. (7.31)

Hence, we can write the full density matrix as

ρf “
1
2

¨

˝

1 e´Γpτq eiϕpτq

e´Γpτq e´iϕpτq 1

˛

‚,

with

Γpτq “ p2n̄ ` 1q η2
r1 ´ cospωτqs, ϕpτq “ η2 sinpωτq.

The coherence amplitude, now summing over all dimensions i, can be written as

C “
ź

i

e´η2
i p2n̄i`1qp1´cos ωiτq (7.32)

and its zero-point phase offset is ϕi “ η2
i sinωiτ , which is very small for ηi ! 1. Here

τ is the time separation between the two emissions from the atom. To maximize

the coherence amplitude, which will directly impact the fidelity, we can try making

the exponent of the exponential close to zero by cooling the atom well to reduce n̄,

reducing η by confining the atom strongly or have ωiτ “ 0 or nπ.

One can try to implement the last condition, by fixing the time between the

excitations to be commensurate with the secular frequencies. However, there will

always be an intrinsic randomness because the emission is spontaneous due to the

finite lifetime τR of each atomic emitter resulting in the random phase ϕ˚
e that ap-

peared earlier. If we carry out the same treatment as above for the case of time
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variations due to spontaneous emissions, we find that the coherence amplitude is

reduced further by the factor

C 1
“
ź

i

e´ζ2
i p2n̄i`1qr1´cos ωipτ˚´τqs (7.33)

with an additional negligible phase offset [155]. Here, τ˚ is the measured difference

in detection time of the two photons in the early and late time bins for each event.

This is similar to the form of Eq. 7.32, except the relevant Lamb-Dicke parameter

ζqi “ ki

a

ℏ{2mωqi is associated with only the recoil from emission. The random

variable τ˚ follows a double-sided exponential (Laplace) distribution with mean 0

and variance 2τ 2
R. We can reduce the impact of this variance by symmetrically

truncating this distribution by post-selecting events with photon detection times

within ˘δt of the nominal value, or |τ˚ ´ τ | ă δt. This results in τ˚ ´ τ following a

truncated Laplace distribution with mean 0 and variance 2τ 2
RW , where the variance

parameter

W “
1 ´ p1 ` w ` w2{2qe´w

1 ´ e´w
(7.34)

smoothly increases from 0 to 1 as the relative window size w ” δt{τR increases from

0 to 8. The yield of accepted events is Y “ 1 ´ e´w. For ωqiτR ! 1, the above

average results in

C 1
«
ź

qi

e´ζ2
qip2n̄qi`1qW ω2

qiτ
2
R . (7.35)

Furthermore, if also ζ2
qip2n̄qi ` 1qωqiτR ! 1, then

C 1
« 1 ´

ÿ

qi

ζ2
qip2n̄qi ` 1qWω2

qiτ
2
R. (7.36)

The net entanglement contrast is C “ CC 1, comes out as:

C “
ź

qi

exp
␣

´p2n̄qi ` 1q
“

η2
qip1 ´ cosωqiτq ` ζ2

qiWω2
qiτ

2
R

‰(

(7.37)
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The first decoherence term in Eq. 7.37 is due to residual entanglement between the

spin of the atom and it’s motion from the separated time of excitation τ “ tl ´ te and

is specific to time-bin encoding schemes. Here, the Lamb-Dicke recoil parameter is

given by ηqi “ ∆ki

a

ℏ{2mωqi for ion q with mass m with respect to the wavevector

difference between excitation and emission along i. Only when ωqiτ is an integer

multiple of 2π for all modes, each ion is excited from the same position in each

time bin, thereby erasing any residual spin-motion entanglement. We implement

this in our experiment by tuning the mode frequencies to be commensurate and

setting the excitation rate 1{τ to be their greatest common divisor (τ “ 6048 ns), as

summarized in Table 7.1. We also observe this effect by scanning the difference in

Table 7.1: Measured harmonic motional frequencies ωqi for the two atomic ions
q “ A,B along direction i and their commensurability with the photonic excitation
rate τ´1 “ 165.35 kHz (τ “ 6048 ns). The six mode frequencies are set to be nearly
integer multiples of the excitation rate, suppressing errors from residual
entanglement with motion. Also shown are the Lamb-Dicke parameters ηqi and ζqi

with respect to the excitation/emission wavevector difference and the wavevector of
emission, respectively.

q (ion) i (mode) ωqi

2π
(kHz) ωqiτ

2π
ηqi ζqi

A Axial 991.5 5.996 0.055 0
A Radial 1 1157.5 7.000 0.086 0.051
A Radial 2 1488.0 8.999 0.013 0.045
B Axial 330.3 1.997 0.095 0
B Radial 1 826.7 4.999 0.066 0.0067
B Radial 2 992.0 5.999 0.073 0.077

excitation times τ about the nominal value, as shown in Fig. 7.8. We estimate that

the residual fidelity error from the drift in mode frequencies is less than 0.1%.

The second decoherence term in the exponent of Eq. 7.37 is a fundamental error

which has not been studied or observed before. It arises from the random detection

times of the photons in each time bin through the random phase ϕ˚
qe given by the

finite lifetime of the emitting atoms, creating residual entanglement between the
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qubits and their motion as above. Note that, in this case, the Lamb-Dicke recoil

parameter ζqi “ ki

a

ℏ{2mωqi is with respect to the emission wavevector only. This

decoherence effect can be difficult to eliminate. In principle, if one can measure the

exact time of emission of the two photons, then appropriate spin-dependent kicks

of the right strength can be applied to combat this effect. We controlled this effect

simply by narrowing the detection window δt characterized by the scaled variance

0 ă W ă 1, at the cost of a degraded yield Y and consequently a reduced rate of

entanglement.

Figure 7.9 shows the observed fidelity and yield as we vary δt from 2 ns (W « 0.01,

Y “ 0.22) to 50 ns (W « 0.95, Y “ 0.998). The measurements are consistent with

the model of Eq. 7.37, assuming thermal states of motion near the Doppler laser-

cooling limit for all modes. We observe a „ 1% improvement in the fidelity by

decreasing the window from 50 ns to 10 ns (Y “ 0.71), with a residual fidelity error

of „ 0.2%.

This decoherence from random photon arrival times is universal to all photonic

encoding schemes for recoiling emitters but has not been previously observed. For

fixed emitters such as color-centers in solid-state hosts [156], the emitter mass be-

comes so large that ηqi, ζqi Ñ 0 and the above recoil-induced decoherence is negligible.

For very weakly-bound emitters such as neutral atoms [164, 165], where ωqiτ, ζqi ! 1,

these effects can be prominent, depending on the level of cooling.

7.4 Experimental parameters

The linear Zeeman splitting between our qubit states is 0.56 MHz/G as seen in

Table 3.2. A static magnetic field of approximately 4 G is applied to each ion trap

chamber, and the field strength is balanced to better than 1 mG across both traps

to align the qubit transition frequencies within 200 Hz.
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7.4.1 1762 nm laser system

The 1762 nm light is generated by a Thulium-doped distributed-feedback fiber

laser (NKT Photonics), which is amplified to a total output of 450 mW. In both

systems, approximately 20 mW of laser power is focused to a 20 µm waist at the

ion, allowing us to drive a resonant π-pulse from |0y “ |2S1{2,mJ “ ´1
2y to |1y “

|2D5{2,mJ “ ´1
2y in 4̃.2 µs, corresponding to a Rabi frequency of approximately 120

kHz.

7.4.2 493 nm pulsed laser system

Single photon generation relies on excitation pulses of duration tp ! τR, where

τR “ 7.855 ns is the radiative lifetime of the excited |ey state. To generate fast, single

pulses at 493 nm, we use a mode-locked Ti:Sapphire laser (Coherent Mira 900P) at

986 nm, producing tp « 3 ps pulses at a repetition rate of frep “ 76.226 MHz [1]. The

pulses are sent through an electro-optic pulse picker that selectively transmits a single

pulse when triggered. These pulses are then frequency-doubled with a MgO-doped,

periodically-poled lithium niobate crystal to 493 nm, quadratically increasing the

extinction ratio of neighboring pulses to a level below 10´4. After passing through

an AOM that further extinguishes subsequent pulses, the single pulse is split in two

paths and fiber-coupled into polarization-maintaining optical fibers directed to Alice

and Bob.

The probability of two photons being emitted from either atom after a single

pulse is estimated to be P 2
excβ

2ptp{8τRq ă 10´5. Here Pexc „ 0.8 (limited by laser

power) is the excitation probability over the duration of the pulse and β “ 0.49 is

the successful branching ratio back to the 0 state. The emitted single photons are

then collected into a fiber with 0.6 and 0.8 NA objectives. Since these objectives

focus 650 nm light at a different spatial point 650 nm photons are filtered out due to

heavy mismatch of wave overlap at the single mode fiber face. Band-pass filter with
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a bandwidth of 10 nm centered at 488 nm and an OD more than 5 at 650 nm also

help in blocking 650 nm photons.

We connect the clock output of the Ti:Sapphire laser to the control system to

synchronize the start of the experimental procedure with the laser repetition rate.

This synchronization leads to a more precise time-stamp of the arrival photons,

removing a potential unsynchronized 1{frep « 13 ns timing jitter.

7.5 Experimental results

Entanglement events are heralded by the detection of a single photon within a

defined temporal window that includes both the early and late time bins as seen

in Fig. 7.6. We measure the quality of entanglement by measuring state fidelity

with respect to the Bell state in Eq. 7.3. The fidelity is recorded by experimentally

measuring the following terms of the equation, F “ pPodd ` Cq{2. Here Podd is the

population of the odd parity states |0A1By or |1A0By and C is the contrast of parity

oscillations of the two qubit states as the relative phase of analysis π{2 rotations

on each qubit is scanned [166]. In this experiment, since we have atoms trapped in

different chambers, we can drive 1762 rotations with different phases. Since we scan

the relative phase between the two atoms, both the Bell states undergo sinusoidal

parity oscillations with a maximum theoretical amplitude of 1. Fig. 7.7 shows

measurements of the fidelity, parity contrast, populations, detection window time

and the yield of measurements for both states Ψ˘. Here, we measure yield as the

fraction of entanglement events that we keep from the total dataset given that two

clicks fall within a certain collection window δt.

As shown in Fig. 7.7, the measured fidelities of the entangled states (uncorrected

for SPAM) are F “ 0.968p4q for the state Ψ` and F “ 0.972p3q for the state Ψ´.

As predicted in Eq. 7.37, we see in Fig. 7.8 that, as the time between excitations

become non-commensurate with the motional frequencies, the fidelities drop. The
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Bell state P↑A↓B + P↓A↑B C F δt Y

Ψ+ 0.990(4) 0.927(6) 0.959(4) 50 ns 0.998
Ψ− 0.996(3) 0.931(6) 0.963(3) 50 ns 0.998

Ψ+ 0.990(4) 0.948(6) 0.968(4) 10 ns 0.714
Ψ− 0.996(3) 0.949(6) 0.972(3) 10 ns 0.714
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1.0
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Figure 7.7: Parity scan: Here we plot the parity of the entangled state, given in
Eqn. 6.10 as a function of the phase difference applied to the qubit laser across the
two qubits. The entangled states undergo parity oscillations as the phase of the
analysis π{2 pulse is scanned in opposite directions for different atoms. The top
table shows the populations of the entangled state as measured in the z basis.
Along with the contrast measurements C from the parity fringes, we obtain the
fidelity F “ pP ` Cq{2. Measurements for two different photon collection window
sizes δt are given, showing that closing down the window increases fidelity at the
cost of a reduced yield. The yield Y in the table measures the fraction of clicks we
keep as we choose clicks in a given window δt. Note that the parity oscillations
shown in the figure correspond to a detection window of δt, given in the last two
rows of the table.

fidelities are maximized with time between excitations τ “ 6048 ns. Note that the

experimental data which are plotted as red dots were not optimized to obtain the

best fidelity, but to demonstrate the fidelity dependence on motional synchronization

and therefore are separate from the main results shown in this chapter. In this figure,

the red curve shows the cooling configuration in our experiment, where one of the

principal axis of the trap is almost orthogonal to the laser cooling beam leading to
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Figure 7.8: Here we plot the measured fidelities of the entangled state of two ions
as we vary the time between two excitations in our time-bin scheme. The red
dashed curve represents a rescaled version of Eq. 7.37. The red solid curve shows
the theoretical curve given our current sub-optimal Doppler cooling beam
geometry, with n̄ values along the three axis given by (13, 12, 15) for Alice and (38,
15, 826) for Bob. This sub-optimal geometry is due to the fact that one of the
principal axis in the radial plane is almost orthogonal to the Doppler cooling beam
resulting in inefficient cooling along that direction. The green curve is assuming a
beam geometry that forms a 45˝ angle between the Doppler cooling beam and any
principal trap axis. Finally the blue curve show zero-point cooling (ZPC, n̄ „ 0).
The inset shows that with a reasonable window size and optimal Doppler cooling, it
is possible to obtain fidelities exceeding 99.5%.

high temperatures along that direction. By applying appropriate quadrupole DC

voltages, it is possible to rotate the principal axis such that the cooling beam is at

equal angles to all the principal axes resulting in cooling along all directions. This

is depicted by the green curve, in the same figure.

The coherence of the entangled state of Eq. 7.3 is insensitive to common-mode

qubit decoherence. In order to determine the effect of differential qubit decoherence

on the observed state fidelity (presumably from differential magnetic field noise),

we perform a Ramsey experiment on qubit A as observed from the frame of qubit
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Figure 7.9: In this figure we plot the fidelity of the entangled state, as we close
down the detection window in the early and late time bins. The data points are
drawn from a single experimental run, and, heralded states within a certain
detection window are analyzed for their fidelity, with statistical error bars shown.
For a given detection time window δt we include all the data points detected in
that time window difference. The green curve shows the fraction of data from the
dataset, that we keep based on δt. The shaded region indicates the expected
fidelity, including motional recoil from Eq. 7.37, assuming Doppler cooling for all
modes given the beam geometry. This band was normalized to match the
experimental value for δt “ 0 with a width reflecting the uncertainty in the angles
of the ion trap principal axes. The green line (right axis) shows the measured
(points) and theoretical (line) yield for each value of, with no free fit parameters.

B [93, 167]. After preparing both ions in the |0y state, we use the 1762 nm laser

to apply a π{2 pulse to both qubits, wait for some delay time ∆t, and then apply

another π{2 pulse with a scrambled phase. By varying the relative phase difference

of the second pulse between the two ions, we measure and fit the parity of the two

qubit states to extract the contrast as shown in Fig. 7.10. Since the two qubits are

not initially entangled, the maximum parity expected without decoherence is 0.5.

After repeating the measurement for different ∆t, we fit the parity amplitudes to

measure the differential decoherence time T ˚
2 . From the data shown in Fig. 7.10 we

fit to expr´pt{T ˚
2 q2s and obtain T ˚

2 “ 2.10p4q ms. This is consistent with an rms

differential magnetic field noise of „ 1 mG over the measurement bandwidth.
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Figure 7.10: Differential qubit coherence: In the left figure, we perform a
Ramsey time experiment, where after waiting a delay time, we measure the two
atom parity. In the left figure we plot the contrast of parity oscillations of two,
ideally uncorrelated ions as a function of the delay time in a Ramsey-type
experiment. In the right figure we plot the joint parity of the qubits as we scan the
phase difference between the analysis pulses of the qubit lasers. For such a
completely uncorrelated qubit this number should be one half. However due to
differential noise, we see a decay in the parity contrast with a decay time of 2.1 ms.

7.5.1 Correction of Erasure Errors

During the photon emission process, there is a „ 24% probability that each

ion decays to the wrong ground state |Xy “ |2S1{2,mJ “ `1{2y. Although the

corresponding π-polarized photons are blocked by a polarizer with ą 98% efficiency,

polarization mixing from imperfect alignment [168], drifts of the fiber birefringence

or possibly window birefringence make it difficult to passively eliminate these false

positives. However, we can flag this qubit erasure error by shelving the state |Xy to

|X 1y “ |2D5{2,mJ “ `1{2y before state detection. After state detection, we de-shelve

|X 1y back to |Xy and perform another round of state detection to check for the error

as denoted in Fig. 7.11. This allows for the suppression of erasure errors to below

0.1% [169] with very little loss in success rate. Using this technique, we observed

a fidelity improvement of at least 1%, with gains exceeding 10% in unoptimized

experimental runs characterized by a higher polarization error. This erasure-veto

technique will play an increasingly important role in suppressing errors when single
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Figure 7.11: Erasure levels: When the atom falls into the wrong state, we can
shelve it to a different state, and check it later to see if we had an error. This is
known as an erasure error.

mode fibers susceptible to polarization drifts are used for long-distance quantum

communication [170].

7.5.2 Entanglement rate calculation

The maximum success probability of ion-ion entanglement is PE “ 1
2pApB which

is measured to be 2.3 ˆ 10´5. The factor of 1/2 accounts for the rejection of

events where both photons are collected in the same time-bin (and on the same

detector). The individual collection and detection probabilities of each node are

pq “ pexcβϵFTϵDpdΩq{4πq. Here pexc “ 0.8 is the probability of excitation (limited

by laser power), β “ 0.49 is the effective branching ratio into the correct subspace,

ϵF « 19% is the fiber coupling efficiency (including polarization rejection by the

fiber [168]), T « 90% is the transmission through optical elements, ϵD “ 0.71 is the

detector efficiency of the avalanche photodiodes (APD), and dΩq is the solid angle of

light collection from chamber q. The objective lenses have numerical apertures (NA)

of 0.6 in Alice and 0.8 in Bob [148]), so dΩA{4π “ 10% and dΩB{4π “ 20%.

We select coincident events occurring within a detection time window ˘δt of the

mean photon arrival time of each time-bin, resulting in a small reduction in PE by the
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yield factor Y “ 1´e´δt{τR , given the atomic lifetime τR. For a detection time window

of δt “ 10 ns (yield Y “ 0.71), the mean entanglement rate is PEY Rf “ 0.35 s´1 at

a repetition rate of R “ 70 kHz and a duty cycle of f “ 30% due to laser-cooling

interruptions.

7.5.3 Error budget

The largest source of error in the entangled state fidelity is intensity fluctuations

in the 1762 nm laser that drives coherent qubit rotations, contributing to SPAM

and the swap of qubit states in the protocol. We observe „ 0.5% fluctuations of the

1762 π time over a few-hour time period. Slow drifts longer than several hours are

eliminated between runs through periodic calibration. These fluctuations degrade

SPAM and are expected to contribute to a fidelity error of 1.9%. We have not used

compound pulses such as BB1 or SK1, which can reduce 1762 pulse errors at the

cost of an extended duty cycle of the experiment.

The temporal wavefunctions of the photons are matched to within 30 ps at the

BS by equalising the path length between the excitation laser and the BS, leading to

a small error of 0.2%. We expect a fidelity error of 0.2% from residual entanglement

with ion motion due to the recoil from the spread of photon detection times within

each time-bin, at a detection window of δt “ 10 ns. Dark counts on the photon

detectors and background scattered light from the excitation pulse are expected

to contribute ă0.2%. Imbalance in the fiber BS (measured to be less than 2%

from the nominal 50:50) and imperfect BS mode matching are expected to limit

fidelity errors to below 0.1%. We observe a differential qubit coherence time of 2.1

ms, likely due to differential magnetic field noise between the two qubits. This is

expected to reduce the fidelity by ă 10´4 during the „ 8 µs dwell time between

the early photon detection and the analysis π{2-pulse. Residual rf micromotion

of trapped ions [125] can result in a fluctuating frequency of the emitted photons,
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causing a phase error in the final entangled state and a reduction in the fidelity. We

measure a micromotion-induced Doppler shift of under 200 kHz through a photon

autocorrelation procedure [125], and expect this to contribute to a fidelity error of

less than 10´4.

All these error sources are summarized in Table 7.2.

Table 7.2: Sources of error affecting fidelity and their magnitudes.
Fidelity

Source of error Error
SPAM / 1762 intensity fluctuations 0.019
Photon wavepacket overlap 0.002
Atom recoil, δt “ 10 ns 0.002
Background counts ă 0.002
Atom recoil, ωqi fluctuation ă 0.001
Beamsplitter imperfection ă 0.001
Residual erasure errors ă 0.001
Micromotion ă 0.0001
Coherence time ă 0.0001
TOTAL ă0.029

7.6 Discussion

Time-bin encoded photons offer a reliable and arguably simple way to entangle

trapped ions over long distances with very high fidelity. We find that most of our en-

tanglement errors come from technical limitations. By stabilizing the 1762 nm laser

power, using hyperfine clock qubits with essentially unlimited coherence, locking trap

frequencies in the MHz range, cooling ions to below one motional quantum, and im-

proving state preparation and measurement, we expect to push remote entanglement

fidelities beyond 99.9%.

Increasing the 1762 nm laser intensity and stability to reach Rabi frequencies

above 1 MHz could raise entanglement rates to around 103 events per second. Achiev-
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ing both high fidelity and high speed is crucial for scaling up photonically connected

quantum computers, building efficient quantum repeaters, and enabling long-distance

quantum communication protocols [171].

7.6.1 Optimizing Rate and Fidelity

Our error budget (Table 7.2) shows that drift in the Rabi frequency of our 1762 nm

laser is the largest error source. Adding a noise eater or active feedback to stabilize

laser power below 0.1%, using low-intensity Doppler cooling on all axes, setting a

short photon detection window (<10 ns), and running at high trap frequencies will

bring us to the Doppler cooling limit. At that point, recoil-limited fidelity naturally

exceeds 99.9% (see Fig. 7.8).

The difference in rates between the time-bin schemes and the polarization scheme

are primarily due to a reduced attempt rate from the long 1762 pulses and an effective

lower single photon collection due to working with a single polarization. To boost

our current sub-Hz entanglement rates into the kHz regime, we need shorter 1762

nm pulses. By focusing the laser more tightly, we can cut π-pulse times to a few

hundred nanoseconds. Higher trap frequencies (several MHz) let us synchronize with

ion motion without slowing down the fast loop. This along with a faster EOM based

pumping scheme to bypass the latency due to AOMs may allow us to increase our

attempt rate to more than 1.0 MHz from the current 70 kHz. We can construct

a second Cleo to get twice the light collection for the second chamber, increase the

fiber coupling to 45% from the current 19% using corrective lenses, perform complete

excitation by using more laser power (increase to 1 from the current 0.8), choose to

excite and collect from an edge Zeeman state which requires no π filtering (for e.g.

|P3{2,´3{2y resulting in an increase to 0.74 from the current 0.49), choose a 50 ns

detection window (to increase the yield to 1 from 0.7), use a sympathetic coolant

to avoid re-cooling interruptions (increasing duty cycle to 1 from 0.3), and by using
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SNSPDs for photon detection (90% efficiency as compared to the current 70%). With

these improvements and starting from the time-bin rate of 0.35 s´1, multiplying the

appropriate numbers with the correct powers we obtain, 0.35s´1 ˆ 2 ˆ p0.45{0.19q2 ˆ

p1{0.8q2 ˆ p0.74{0.49q2 ˆ p1{0.7q ˆ p1{0.3q ˆ p0.9{0.7q2 ˆ p1 MHz{70 kHzq “ 1511 s´1

. It will probably be easier to use cavity based photon extraction to exceed 1 kHz

entanglement rates. At that point multiplexing can be used to get into 10s of kHz

which will then become comparable to local two qubit entangling gate speeds in ion

traps, at the cost of using more ions.

In the next chapter, we extend this scheme to multiple time bins, making it

easy to interface with high-dimensional quantum registers [86, 172]. That flexibility

lets us generate complex entangled qudit states for advanced networking [173] and

quantum computing tasks [174].
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8

Higher dimensional quantum networking of atoms

This chapter is based on the preprint “Photonic Networking of Quantum Memo-

ries in High-Dimensions”. [175]

In Chapter 7, we explored the challenge of creating remote entanglement between

our trapped ion-based quantum memories. While encoding quantum information in

a photon’s polarization is a relatively straightforward approach, it comes with a

significant problem: the polarization state is fragile and easily scrambled by the

unavoidable birefringence in different optical elements. This poses a problem in

building a large and reliable quantum network where qubits are entangled with low

error rates, enabling distributed quantum computing [176].

To address this, we utilized time-bin encoding as a promising alternative. By

encoding information in the time degree of freedom, we are robust against almost

all unitaries. This is due to the difficulty of mixing information which are light-like

separated (possible only via electromagnetic interaction). This chapter describes the

experimental realization of this idea, but with an extension: we move beyond two-

level qubits to harness the rich energy level structure of our 138Ba`ions to create and

network high-dimensional quantum systems, or “qudits”.

Qudits have d-distinct levels, instead of the usual two in a qubit [177]. Thus, their

Hilbert space grows as dn instead of 2n for qubits. This may have advantages: more

efficient resource utilization via a higher-dimensional Hilbert space may allow the dis-

covery of novel, resource-friendly algorithms and simulation techniques [43, 98, 172,
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Figure 8.1: Representative diagram of quantum memory: Interfacing with
a quantum network via time-binned photons.

178, 179]. They may also be useful for new quantum networking applications: using

the higher dimensional Hilbert state of the entangled atom-photon pair to distribute

more quantum information per photon [113, 180] and quantum key distribution [181,

182]. Memory implementations of qudits have been demonstrated in platforms such

as superconducting Josephson Junctions where the anharmonicity of the quantum

oscillators offers access to many levels [183, 184]. Many atomic species exhibit rich,

multi-level structure that can be used as qudits [98]. While atoms, with their large

number of long-lived atomic levels, can interface with optical photons, it can be chal-

lenging to do the same with superconducting qubits [185, 186]. Qudit entanglement

via photons have been explored using atomic ensembles [187], however they are not

practical for use in a quantum computer. On another side, high-dimensional (HD)

photons have been realized via different degrees of freedom, e.g. frequency, time and

angular momentum [113]. Two photons have been entangled in a massive 100x100

dimensional Hilbert space [188].

In this chapter, we describe our work on generating high-dimensional (HD) single

photons encoded in time-bins and entangling them with single-atom qudit memories

of dimension up to four. By operating two such spatially separated atom-photon

qudit nodes, we create, interfere and detect these HD photons to probabilistically

project the two distant atomic qudits into Bell-like entangled states. We achieve
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qubit-entanglement fidelities as high as 0.987(13). Finally, we directly measure the

photonic-qudit heralding success probability

F “ 1 ´
1
d

(8.1)

which exceeds the usual Bell-state limit of 1/2 for qubits.

I will detail our protocol for entangling an atomic qudit with a time-bin-encoded

photon, the networking of two such remote memories, the high-fidelity results we

achieved, and an analysis of the experimental results.

8.1 The Atom-Photon Interface: Creating a Flying Qudit

The core of our high-dimensional network is the ability to create a single photon

whose quantum state is entangled with the state of an atomic qudit. First, we detail

the experimental protocol we developed to achieve this, generating single photons

encoded in up to four distinct time windows, or “time-bins”, from a single trapped
138Ba` ion.

8.1.1 Qudit Levels

To host our high-dimensional quantum state, we take advantage of the rich energy

level structure of the 138Ba` ion. We encode the qudit states across the ground and

metastable electronic manifolds, similar to what we did in the last chapter. As shown

in the level diagram in Fig. 8.2, we define our qudit states as:

• |0y ” |2S1{2,mJ “ ´1{2y

• |t1, 2, 3uy ” |2D5{2,mJ “ t´1{2,´3{2,`1{2uy

The ground state, |0y, serves as our “bright” state. It has a strong, fast transition

to the excited state |ey ” |2P1{2,mJ “ `1{2y that we can drive with our pulsed

493 nm laser light to reliably produce a time-bin photon, exactly as before. The

other states, |1y, |2y, and |3y, are stored in the long-lived metastable 2D5{2 manifold.

This structure allows us to use the bright |0y state as a temporary bus for generating
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Figure 8.2: Scheme for qudit-photon entanglement generation: A single
level in the ground S level |0 ” S1{2,mj “ ´1{2y is used for single photon
generation. Additional levels in D5{2 are used to encode the other qudit states
|1y , |2y , |3y. Note that we use |Xy “ |S1{2,mJ “ 1{2y level as an error state which
we shelve to |X 1y “ |D5{2,mj “ 3{2y, rendering the atom dark during state
detection.

a photon entangled with any of the qudit states.

For error-mitigation purposes, we also define two additional states: an error state

in the ground manifold, |Xy ” |2S1{2,mJ “ `1{2y, and a corresponding error state

in the metastable manifold, |X 1y ” |2D5{2,mJ “ `3{2y. As we will discuss later,

these states are used for error-erasure that significantly improves our final fidelity

[154].

8.1.2 Qudit-HD photon entanglement

Generating a time-bin photon that is entangled with our atomic qudit follows

exactly the same protocol as described in the previous chapter. We now simply

extend it to the d-dimensional case as shown in Fig. 8.3.
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Figure 8.3: Qudit time-bin generation: After optically pumping into |0y, we
create an equal superposition by transferring an appropriate population into
|1y , |2y , |3y sequentially. To generate entangled high dimensional photons, we excite
|0y to |ey and collect any σ` emission. After this we swap |0y Ø |jy @j P t1, 2, 3u

and repeat the last two steps, d times for a d-dimensional qubit.

Protocol: Qudit Entanglement Generation

1. Cool and initialize qubits in |0y state.

2. Create an equal superposition |ψ0y “ 1?
d

řd´1
j“0 |jy.

3. Apply excitation pulse to transfer |0y to a short lived state |ey.

4. Collect any spontaneous emission.

5. Swap populations between |0y Ø |iy ; i Ă 0, 1, 2, 3 using a π pulse.

6. Repeat steps 3-5 until all qudit levels gets swapped and excited.

1. Initialization and state preparation: The experiment begins by Doppler cooling

the ion with 493 nm and 650 nm light. We then optically pump the atom into

the |0y state. Using a series of carefully calibrated pulses from our 1762 nm

laser, we prepare the ion in an equal superposition of all d qudit states: |ψ0y “
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1?
d

řd´1
j“0 |jy. This is done by sequentially driving transitions between |0y and

|jy states of the qudit. For d dimensions, assuming a π-time tπ, we drive a

1762 pulse of duration t “ 2tπ

π
cos´1p1{

?
dq between |0y and |iy @i P r1, 2, 3s

with zero phase.

2. Generate the first time-bin: A single 3 ps, σ`-polarized 493 nm laser pulse from

our excitation laser is sent to the ion. This pulse is resonant with the |0y Ñ |ey

transition. If the atom was in the |0y state, it gets excited with a probability

p and then spontaneously decays, emitting a photon. This time-bin, arrives in

the |0y time window, has a characteristic exponential decay time of 7.86 ns,

and is now entangled with the atomic state |0y.

3. Swap and Excite for Subsequent Time-Bins: To generate the next time-bin, we

apply a π-pulse with the 1762 nm laser to swap the populations of the |0y and

|1y states. We then fire another 493 nm excitation pulse. Now, any population

that was originally in the |1y state is in the bright state and will be correlated

with the second time-bin. This "swap-and-excite" process is repeated for all

the remaining qudit states [48].

A major experimental challenge here is dealing with the arbitrary phase due to

the “atomic recoil”. As discussed in Chapter 7, this recoil can entangle the atom’s

internal state with its motion in the trap, which will lead to an irreversible loss in

fidelity of both the atom-photon and atom-atom entangled state, unless accounted

for. To prevent this, we must ensure the atom’s motion completes a full circle in

phase space between photon emissions. We achieve this by carefully setting the time

separation between our excitation pulses to be synchronous with the atom’s motional

time period. For this experiment, we used a time-bin separation of τ “ 5680 ns,

which is commensurate with the period of atomic motion. This effectively erases

any “which-path” information that could be encoded in the atom’s motion, thereby
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d

Figure 8.4: High dimensional photons in time: Arrival times of 6106 single
photon detection events at different time windows separated by τ “ 5680 ns. These
time-binned photons have an exponential decay of t “ 7.86 ns due to the excited
state lifetime, which are smeared out due to electronic response times.

recovering the entangled state fidelity [154, 158, 189, 190]. The resulting photon

arrival histogram, clearly showing four distinct time-bins, is displayed in Fig. 8.4.

We collect the photon emitted from the atom using a high-numerical-aperture

objective and couple it into a single-mode optical fiber. If a photon is successfully

collected, the atom and photon are ideally left in the maximally entangled state:

|ψyatom-photon “
1

?
d

d´1
ÿ

j“0
|jypaq

|jyppq , (8.2)

where |jypaq is the state of the atomic qudit and |jyppq denotes a photon detected in

the jth time-bin. This entangled atom-photon pair is the fundamental building block

for our network.

In our two-node experiment, we generate two of these entangled pairs in two

separate systems, which we label A and B. The end-to-end probability of collecting

and detecting a photon from each system is pA “ 0.005 and pB “ 0.007. These

probabilities are a product of several factors, including the solid angle of our collection

optics, losses in the optical path, and the quantum efficiency of our detectors, as

shown in Table 8.1. Based on the fidelity of the final remote entangled state between

the two atoms (which we will discuss in the next section), we can infer a lower bound
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Table 8.1: Photon collection and detection efficiencies pA and pB.
Component System A System B
Lens solid angle 0.1 0.2
Fiber coupling 0.30(4) 0.20(3)
Trap clipping 0.78(2) 0.97(1)
Optical losses 0.90(2) 0.80(2)
APD quantum efficiency 0.65(3) 0.65(3)
Excitation probability 0.70(5) 0.70(5)
Branching ratio 0.486 0.486
Total pA “ 0.0047p8q pB “ 0.0069p12q

on the fidelity of our initial atom-photon entangled states. Using the methods similar

to [191], we find these fidelities to be F ą t0.959, 0.931, 0.913u for qudit dimensions

d “ t2, 3, 4u, respectively. This confirms that we are generating entangled pairs

which are now ready to be used for quantum networking.

8.2 Networking Qudit Memories

Using the the method described above, for creating a HD entangled pair between

a single atom and a photon, we next utilize it to entangle two remote atoms with each

other. One possible way to do this is to overlap the two photons at a beam splitter

and wait for coincident clicks, projecting the atoms in an entangled state, analogous

to a Bell State Measurement. The difference between this technique and the earlier

ones is that we now expect a greater number of detection patterns, corresponding to

the greater number of levels the atom can be entangled in.

8.2.1 The Experimental Setup and Protocol

We entangle two qudit memories of dimensions d upto four using the same setup

as the qubit experiment, shown schematically in Fig. 8.5. In each node, we perform

the atom-photon entanglement protocol we described earlier. The single photons

emitted from each atom are collected and coupled into single-mode optical fibers.
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Figure 8.5: Remote entanglement mediated by high dimensional
photons

These fibers guide the photons to a Bell state analyzer where they are interfered on

a 50:50 in-fiber beamsplitter and sent to a set of avalanche photodetectors (APDs)

where two photons in different time-bins |ny and |my are detected.

We run the atom-photon generation sequence on both nodes at the exact same

time. We Doppler cool and initialize the atoms in |0y. After this we prepare each

atom in an equal superposition of its d qudit states. The combined two-atom state

can be written as:

|ψ0y “
1
d

˜

d´1
ÿ

j“0
|jypaq

A

¸

b

˜

d´1
ÿ

q“0
|qypaq

B

¸

(8.3)

where the superscript paq denotes an atomic state, and the labels tA,Bu refer to the

atoms in the two nodes.

Next, we generate the time-bin photons as described before. The process of

emitting a photon in time-bin |jy can be described by the operator:

Aj “ |jypaq
xj|paq

´

?
pei∆k¨rA,Bptjqc:

j `
?

1 ´ p
¯

`

d´1
ÿ

q‰j

|qypaq
xq|paq (8.4)

Here, p is the overall probability of detecting the photon, c:
j is the photon creation

operator for time-bin j, ∆k “ k1 ´k is the wavevector difference from the excitation

and emission process, and rA,Bptjq is the position of the atom at the time of emission

tj. The first term therefore describes the case when the atom gets excited, and its

emitted photon collected and detected resulting in a momentum kick as well. The
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second term describes the case when excitation has failed. The third term keeps the

atom’s state which are not in the jth level, intact.

Let’s consider the state after the first photon has been successfully collected from

one of the the atoms in the time-bin, n. The joint state of the two atoms and their

corresponding photons at the input of the beamsplitter is:

|ψ1y “ |ny
paq

A

˜

d´1
ÿ

jąn

|jypaq

B

¸

|ny
ppq

A eiϕA,n ` |ny
paq

B

˜

d´1
ÿ

jąn

|jypaq

A

¸

|ny
ppq

B eiϕB,n (8.5)

where ϕtA,Bu,n “ ∆k ¨ rtA,Buptnq ` ϕopt
tA,Bu

accounts for both the motional and optical

phases acquired by the photon. The photons are then interfered on the beamsplitter,

which performs the transformation |ny
tA,Bu

Ñ p|nyC ˘ |nyDq{
?

2, where A, B are the

input ports corresponding to the two nodes and C,D are the output ports. The state

after the beamsplitter, conditioned on a single photon detection in one of the output

modes (say, C), is:

|ψ2y 9 |ny
ppq

C

˜

|ny
paq

A

d´1
ÿ

jąn

|jypaq

B eiϕA,n ` |ny
paq

B

d´1
ÿ

jąn

|jypaq

A eiϕB,n

¸

(8.6)

Finally, after the population swap and a second excitation pulse, a second photon

is detected in a later time-bin, m ą n. This heralds the creation of a maximally

entangled Bell state between the two remote atomic memories. The final state of the

two atoms, conditioned on the photon detection pattern, is:
|ψ3y “ p|ny

paq

A |my
paq

B ei∆ϕ
˘ |my

paq

A |ny
paq

B q{
?

2 (8.7)

where the differential phase is ∆ϕ “ pϕA,n ´ϕA,mq ´ pϕB,n ´ϕB,mq. The sign depends

on which detectors clicked: (+) for the same detector clicking on different time bins,

and (-) for different detectors clicking on different time bins. It is important to note

that because of the swap pulses used to generate the time-bins, the final atomic

states are advanced, so a detection in time-bins pn,mq actually corresponds to the

atomic state involving levels pn` 1,m` 1q mod d. All of these steps are illustrated

in Fig. 8.6.
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Figure 8.6: State analysis pulse sequence: Once we get photon clicks in time
bins n and m (2,3 for example), we proceed with state analysis. First we shelve the
error state |Xy Ñ |X 1y. After that we bring the state m (m>n, since m has a
higher magnetic field sensitivity) back into |0y. This is followed with an analysis
π{2 pulse with a varying phase between the appropriate states (|0y Ø |2y), and
state detection.

8.2.2 Entanglement results

Once an entanglement is heralded (for states n,m), we need to verify that we have

actually created the state we intended. We do this by measuring the final state of

the two atomic qudits. This is performed in two-steps. First, we use 1762 nm laser

to coherently transfer the populations from level m (>n) to the ground state. We

perform a standard fluorescence measurement to check if either of the atom was in

level m. Note that we shelve the higher labeled state to the ground level first, since it

has a higher magnetic field sensitivity. We repeat the same procedure for the atom in

level n. We discard trials in which either of the atoms are dark. Our state detection

fidelity is better than 99%, including any imperfections from the population transfer

pulses.

To quantify the quality of our entangled state, we measure its fidelity, F , with

respect to the ideal Bell state. The fidelity is given by F “ pP ` Cq{2, where P is

the population in the correct basis states (i.e., the probability of finding the atoms in

either |nyA |myB or |myA |nyB), and C is the contrast of parity oscillations between
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these two states [166].

We perform a parity scan between the level n,m by applying an analysis π{2

pulse with a variable relative phase ∆ϕ to both atoms before performing the state

detection. We construct the parity observable from Eq. 6.10, and extract its contrast,

to obtain the fidelity of the entangled state.

All of the results for these measurements, for qudit dimensions d “ 2, 3, and 4

are shown in Fig. 8.7. We also show the calculated populations, parity contrasts

and fidelities of all the heralded states in Tab. 8.2. Additionally we also plot the

distribution of the states right after the heralding and after the analysis pulses in

the set of figures given in 8.9, 8.8. We observed fidelities, ranging from 0.849p23q to

an excellent 0.987p13q, without correcting for any state preparation or measurement

errors.
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Figure 8.7: Qudit entangled state analysis. We measure the fidelity of each
entangled qudit state Ψ˘ “ |nyA |myB ˘ |myA |nyB for dimensions d “ t2, 3, 4u,
displayed on the left column for each value of n and m. The fidelities are calculated
from the population measurements (middle column) and the contrast of the parity
scans (right column). The fidelity and population box plots represent the the
fidelity and population measurements for different qudit levels which are
represented by different column numbers of the boxes. The parity scans show the
parity as we scan the relative phase between the analysis pulses on the two ions.
The plots are all color coded to represent the same qudit levels. The parity
oscillations are measured after an analysis π{2 pulse on each atom with a phase
difference ∆ϕ between them. The box diagram on the left read as follows: a given
box at row/column:m/n denotes the results of the state |nyA |myB ˘ |myA |nyB. All
data includes state preparation and measurement errors.
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Table 8.2: Qudit state results: Measured fidelities, populations, and contrasts
for each entangled Bell state for qudit dimensions d “ t2, 3, 4u.

Dimension d “ 2
State Fidelity Populations Contrast

|01y ` |10y 0.950 (19) 0.986 (6) 0.909 (33)
|01y ´ |10y 0.941 (15) 0.988 (5) 0.891 (26)

Dimension d “ 3
State Fidelity Populations Contrast

|01y ` |10y 0.950 (19) 0.984 (8) 0.909 (33)
|01y ´ |10y 0.941 (15) 0.987 (8) 0.891 (26)
|02y ` |20y 0.959 (13) 0.993 (5) 0.925 (23)
|02y ´ |20y 0.943 (11) 0.984 (8) 0.893 (17)
|12y ` |21y 0.917 (13) 0.992 (6) 0.857 (17)
|12y ´ |21y 0.927 (18) 0.993 (5) 0.881 (26)

Dimension d “ 4
State Fidelity Populations Contrast

|01y ` |10y 0.950 (19) 0.991 (5) 0.909 (33)
|01y ´ |10y 0.941 (15) 0.992 (5) 0.891 (26)
|02y ` |20y 0.959 (13) 0.993 (4) 0.925 (23)
|02y ´ |20y 0.943 (11) 0.992 (5) 0.893 (17)
|12y ` |21y 0.917 (13) 0.977 (9) 0.857 (17)
|12y ´ |21y 0.927 (18) 0.973 (9) 0.881 (26)
|03y ` |30y 0.901 (18) 0.966 (10) 0.836 (27)
|03y ´ |30y 0.864 (18) 0.953 (11) 0.774 (25)
|13y ` |31y 0.987 (13) 0.988 (6) 0.987 (20)
|13y ´ |31y 0.971 (12) 0.985 (7) 0.958 (17)
|23y ` |32y 0.862 (18) 0.982 (7) 0.741 (29)
|23y ´ |32y 0.849 (23) 0.993 (4) 0.706 (41)
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Figure 8.8: The states of atoms A and B after the entanglement heralding. Here,
we plot the populations of specific qudit levels.
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Figure 8.9: The states of atoms A and B after entanglement heralding followed
by analysis π{2-rotation with the phase difference ∆ϕ. We again plot the
populations of the different qudit levels after specific analysis sequence.

8.2.3 Experimental error sources

We observed the following error sources:

8.2.3.1 Magnetic field drift

Although the symmetric nature of our heralded Bell states makes them robust

against common-mode magnetic field noise that affects both atoms equally, we found

that slow, differential drifts in the magnetic field between the nodes were a dominant

source of error. This differential field can cause the relative phase of the entangled

state to drift over the duration that we take experimental data, causing our phase

to gradually drift as well. We can write the heralded state at the time of analysis,

T , as:

|ψpT qy “
|nyA |myB ˘ e´iϕ |myA |nyB?

2
. (8.8)
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Table 8.3: Bell state phase sensitivities to magnetic field for all heralded states
and qudit dimension d “ t2, 3, 4u. These are given by the magnetic g-factors of the
relevant states along with dwell times for shelving and swapping operations for
each protocol.

Phase sensitivity (rads/mG), γnm

Heralded Bell state d=4 d=3 d=2
|10y ˘ |01y 0.31 0.61 0.49
|20y ˘ |02y -1.24 -0.92 –
|30y ˘ |03y 1.71 – –
|12y ˘ |21y 1.64 1.65 –
|13y ˘ |31y -0.50 – –
|23y ˘ |32y -3.22 – –

The accumulated phase, ϕ “ δBγnmT , depends directly on this field difference. Here

δB is the average magnetic field difference between the two qudit positions A and B

over the time T it takes for the analysis to fire after a heralding event.

The sensitivity factor, γnm, is unique to each heralded Bell state. It depends not

only on the relative Zeeman shifts of the specific atomic levels |ny and |my involved,

but also on the entire sequence of shelving and swapping pulses and therefore the

time that each of the qudit states spend in different magnetic field sensitive states.

This results in a predictable effective magnetic field sensitivity γnm for each state,

which we summarize in Table 8.3.

If left uncompensated, this slowly drifting phase would average out our parity

measurements, over the long duration of a data run, lowering the fidelity. To bypass

this issue, and extract the true fidelity of the entangled state (fidelity of the state

at the instant they were heralded), we post process our data. We make a reason-

able assumption that the magnetic field drifts on a timescale much slower than our

entanglement generation rate. This allows us to treat δB as constant for a given

data set but variable over the course of the entire experiment. For each point in

time during our data acquisition, we determine the value of δB that best fits the ob-
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served phase drifts across all measured Bell states simultaneously, using their known

relative sensitivities from Table 8.3.
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Figure 8.10: Differential magnetic field drift and phase feed-forward.
Solid points are measured phase drifts of all entangled state coherences for qudit
dimensions d “ 2, 3, 4. Here we plot the estimated magnetic fields as it drifts in
time. The dashed lines are fits of the state phases at each point in time to a
particular differential magnetic field δB between the two systems that minimizes
the deviation from the phase shift ϕ “ δBγnmpdqT using the state sensitivities from
Table 8.3. The fitted differential magnetic field is shown in the first plot of each
family of plots.

This feedforward adjustment effectively re-phases the entangled states, allowing

us to recover the true parity contrast, and therefore it’s fidelity (at the time the state
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was heralded). Fig. 8.10 shows the measured phase evolution for each Bell state over

several hours. A single fitted differential magnetic field correctly captures the drift for

all states, demonstrating the validity of our assumption. For the most magnetically

sensitive state, this rephasing procedure improved the measured coherence contrast

by approximately 22%.

Alternatively we can avoid this issue by having magnetic field insensitive qubits

or active magnetic field stabilizing hardware. All of the fidelity results presented in

this thesis, including the populations and contrasts shown in Table 8.2 and Fig. 8.9,

have been applied with this correction. It should be noted that the error bars shown

in Figs. 8.8 and 8.9 are calculated assuming the Central Limit Theorem, which differs

slightly from the method used for the values in Table 8.2.

8.2.3.2 Erasure errors

Owing to polarization mixing, there is a small chance, that when a photon is

collected, the population lands in the wrong ground state |Xy, due to incorrect

polarization filtering. This may be due to inhomogeneous birefringence of optical

components such as vacuum windows which mixes σ` and π polarizations.

Therefore, after a successful entanglement herald before the final state measure-

ment, we apply a "shelving" pulse that moves any population that has erroneously

ended up in |Xy to the dark metastable state |X 1y. Then, during fluorescence de-

tection of states n and m, if an atom appears dark, we know an error must have

occurred. We can then simply discard those experimental trials. This technique

allowed us to reject [11.5, 6.4, 9.1]% of our data for d=[2,3,4]. By converting a state

error into an erasure, we were able to increase our final fidelities.

8.2.3.3 Other Error Sources

As we increase the dimension d of our qudit, the protocol requires more population

swapping pulses, and the error from each pulse accumulates. There are also errors
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due to decoherence from fast magnetic field fluctuations. This is why we see state

specific fidelity reduction depending on it’s magnetic field sensitivity γnm. States

which have higher magnetic field sensitivity will be more vulnerable to fast magnetic

field noise and consequently yield lower fidelities. We also noticed a double-excitation

error when the detected time-bins are adjacent (m ´ n “ 1), caused by imperfect

swapping pulses leaving some population behind in the ground state to be excited a

second time. Consequently for entangled states for which m ´ n ą 1, have a higher

fidelity because the subsequent swap pulses act as a shelving pulse for the erroneous

‘leftover’ population. We again remind the reader that the final atomic states are

different from the heralded time bin detections because of the swap pulses.

Bell states such as |01y ˘ |10y or |13y ˘ |31y are less sensitive to the effects

mentioned above and therefore are on par with the very best remote entanglement

fidelity benchmarks [154]. State like |23y ˘ |32y have m ´ n “ 1 making it prone

to errors from double excitation, require additional shelving pulses, and suffer from

decoherence due to high magnetic field sensitivity, and ultimately result in reduced

fidelity.

A complete breakdown of the error budget can be found in Table 8.4. We split

errors into two categories: errors that are common to all entangled states and those

which are specific to states residing in certain Zeeman levels, as we have already

described. Common error sources contribute approximately 1.51% to total infidelity

in all measurements. 0.5% of the common error sources are due to state preparation

and measurement (SPAM), which is limited by our 1762 nm shelving fidelity to the

detection dark state. Our dark-state discrimination error is negligible.

133



Table 8.4: Error budget.
Common errors (%)

SPAM 0.5
Photon wavepacket overlap 0.2
Atom recoil, δt “ 50 ns 0.3
Background counts ă 0.2
Atom recoil, ωqi fluctuation ă 0.1
Beamsplitter imperfection ă 0.1
Residual erasure errors ă 0.1
Micromotion ă 0.01
TOTAL common errors (%) 1.51
Errors for individual Bell states (%)

d “ 4
Bell state Decoherence 1762 error TOTAL
|01y ˘ |10y 0.1 0.98 2.59
|02y ˘ |20y 0.9 2.61 5.02
|12y ˘ |21y 1.6 7.68 10.79
|03y ˘ |30y 1.7 7.1 10.31
|13y ˘ |31y 0.2 1.19 2.9
|23y ˘ |32y 5.9 6.23 13.64

d “ 3
Bell state Decoherence 1762 error TOTAL
|01y ˘ |10y 0.2 0.98 2.69
|02y ˘ |20y 0.5 10.76 12.77
|12y ˘ |21y 1.6 7.12 10.23

d “ 2
Bell state Decoherence 1762 error TOTAL
|01y ˘ |10y 0.1 8.6 10.21

8.2.4 Entanglement Rate and the Trade-off of Higher Dimensions Rate
and Success Probability

For any given attempt, the probability of successfully generating an entangled

state between our two atoms is Pent “ FpApB, where pA and pB are the single-photon

detection efficiencies for each system, and F is the heralding success fraction.
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It is a known fact in quantum networking that when using standard linear optics,

the Bell-state measurement for two qubits (d “ 2) can only unambiguously distin-

guish two of the four possible Bell states [192, 193]. This puts a hard cap on the

success fraction at F “ 1{2. While schemes have been proposed to get around this

limit using resources like “ancillary” photons or complex nonlinear optical elements,

these can add significant experimental complexity and overhead [100, 104, 194–201].

Our high-dimensional approach, however, offers a much more direct way to increase

this efficiency.

When we interfere two d-dimensional photons, there are d2 possible combinations

of arrival times. The measurement only fails if both photons arrive in the same

time-bin (e.g., both in time-bin 0, or both in time-bin 1, etc.), as these events are

indistinguishable and do not herald entanglement. There are exactly d such failure

cases. This leaves d2 ´ d successful heralding events, giving a theoretical success

fraction of:

F “
d2 ´ d

d2 “ 1 ´
1
d
. (8.9)

This simple relation shows that for d “ 2, we recover the 50% limit, but for d “ 3

the success fraction increases to 66.7%, and for d “ 4 it reaches 75%.

d = 2 d = 3 d = 4
0.0

0.2

0.4

0.6

0.8

1.0 observed
expected

Figure 8.11: Measured Bell-state measurement (BSM) success fractions for qudit
dimensions d=2,3,4 (black points and statistical error bars). The success fraction
increases with dimension according to the theoretical scaling F = 1-1/d (orange
bars), which reflects the fraction of distinguishable antisymmetric Bell states.
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We directly verified this scaling in our experiment, with the results shown in

Fig. 8.11. To extract the success fraction F from our data, we took our measured

total success probability Pent and divided out the independently measured efficiencies

of our two systems, pA and pB (see Table 8.1, 8.5 for details). For d “ t2, 3, 4u, we

measured success fractions of F “ t0.37p11q, 0.64p17q, 0.90p24qu, respectively. These

results agree well with the theoretical predictions and clearly demonstrate that our

high-dimensional network surpasses the fundamental 50% limit.

While the success fraction F gets better with higher dimensions, there is a price

to pay in the overall entanglement rate, R. Each additional time-bin we generate

adds an overhead time, τbin, to our experimental cycle. The overall rate can be

expressed as:

R “
FpApB

τ0 ` τbinpd ´ 1q
, (8.10)

where τ0 is the base time for an entanglement attempt. This equation reveals a

trade-off: as we increase d, the numerator gets larger, but so does the denominator.

This means there is an optimal dimension that maximizes the entanglement rate,

which depends on how quickly we can generate the extra time-bins.

In our setup, the entanglement rate is primarily limited by the speed of our

population swap operations with the 1762 nm laser, and the need to keep our time-

bin separation synchronized with the ion’s motional periods to avoid decoherence.

For d “ t2, 3, 4u, our total entanglement cycle times were approximately τcycle «

t17.0, 22.7, 34.1u µs, respectively. These times depend on the Rabi frequency of

our 1762 nm laser, which we recalibrate regularly to ensure high-fidelity rotations.

Further details on the rates and number of experimental trials can be found in

Table 8.5.
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Figure 8.12: Remote entanglement rates and total entanglement success
probabilities for dimensions d “ t2, 3, 4u. Each point represents a separate data set
collected over time. Dashed lines indicate the average entanglement rate for each
qudit dimension.

Table 8.5: Experimental metrics for different qudit dimensions d “ t2, 3, 4u.
Attempt length increases with dimension due to the need for more swaps between
levels. Wall-clock time and experimental entanglement rate are calculated with
experimental overhead included. The entanglement generation success probability
Pent is computed from the number of successes and attempts.

d
Attempt
length
(µs)

Attempt
rate

(kHz)
Time (s) Successes Attempts

Experimental
entanglement

rate (s´1)

Pent

(ˆ10´5)

2 17 58 9,844 5,121 437,972,714 0.553 1.17
3 22.7 44 35,342 23,427 1,149,607,096 0.694 2.04
4 34.1 29 31,315 19,941 689,981,646 0.666 2.89
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8.3 Outlook

The work presented in this chapter demonstrates that qudit memories and high-

dimensional photons can expand the capabilities of quantum networks. We have

shown a path to more efficient entanglement generation that is robust against the

environmental noise. While we have focused on generating specific, two-level Bell-

like states within our larger qudit space, the platform we have developed can be

extended in several directions.

One straightforward extension is to generate entanglement that spans the entire

d-dimensional space. This could be done, for example, by converting our time-bin

photons into path encoded photons, which would allow for programmable, all-to-all

interference that can herald the creation of arbitrary entangled qudit states [202].

Another promising avenue is to move away from two-photon interference alto-

gether and use a "pitch-and-catch" scheme. In this approach, one atomic memory

would emit a high-dimensional photon, which would then be directly absorbed by

a second, remote memory. This would deterministically transfer the quantum state

from one node to the other, offering a very different paradigm for state transfer [203–

205].

Distributing these rich, high-dimensional entangled states across a network offers

a powerful and resource-efficient toolkit for the future of scalable quantum informa-

tion science. As we look ahead, these techniques may play an important role not

only in building larger and more capable quantum computers, but also in enabling

new forms of quantum communication and sensing.
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9

Conclusion

In this thesis, we have explored the challenge of scaling quantum computing

systems via photonic interconnects. We investigated two distinct schemes for herald-

ing entanglement between spatially separated quantum computing nodes. By im-

plementing these schemes in our quantum networking testbed using polarization-

encoded photonic qubits, we achieved a proof-of-principle demonstration that set a

new record for the entanglement rate between two quantum memories.

To mitigate the challenge of unpredictable polarization rotations in optical fibers,

we transitioned to a time-bin encoding scheme. This implementation, however, faced

unexpected limitations originating from the atomic recoil induced by photon emis-

sion—an effect not previously considered in heralding protocols. While typically

negligible in non-time-bin schemes, these recoil effects become significant in our con-

figuration, allowing us to derive fundamental limitations for such heralding processes.

Despite this challenge, the time-bin scheme enabled us to herald Bell pairs with the

highest fidelity reported to date, demonstrating a possible method for establishing

high-fidelity remote entanglement.

Although our systems have independently set new benchmarks for both rate and

fidelity, a significant gap remains before these protocols can be used to scale full-

stack quantum computers. Achieving the required performance for fault-tolerant

architectures necessitates reaching fidelities exceeding 99% while maintaining entan-

glement rates of several kilohertz. The following section outline a strategic path
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toward achieving these goals.

9.1 Improving Fidelity: Frequency-Mediated Entanglement

2S1/2

2P1/2

-9.925 GHz

5 2D3/2

5 2D5/2

493 nm

43 THz

532 nm

1762 nm

650 nm

2052 nm
I0>
I1>

-1.84 GHz

Figure 9.1: Level diagram of 133Ba`

One way to enhance fidelity without compromising rate is to use frequency-binned

photons. Similar to time-bin encoding, the frequency degree of freedom is robust

against decoherence during transmission through optical components and fibers. This

approach holds a distinct advantage over time-bin schemes as it does not require

intermediate qubit swap pulses, which can slow down the entanglement generate

rate.

Implementing a frequency-based scheme necessitates an atomic species which can

generate photons with frequency differences large enough to be resolved by a high-

finesse optical cavity or a diffraction grating. This resolvability is crucial to distin-

guish between different heralding outcomes. While heralding events where photons

exit separate output ports of a beam splitter are readily identifiable, detecting events
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where two photons of the same frequency exit the same port requires robust frequency

separation. This has been experimentally demonstrated for frequency differences on

the order of a few gigahertz. The isotopes Barium-137 (137Ba`) and Barium-133

(133Ba`) (see Fig. 9.1) are ideal candidates for such a scheme, as their ground-state

hyperfine splittings of approximately 8 GHz and 10 GHz, respectively, are well-suited

for high-fidelity photonic frequency-based entanglement.

A typical entanglement protocol would consider the qubit states as |0y ” |S1{2, F “ 0y

|1y ” |S1{2, F “ 1,mF “ 0y. We would initialize in |0y via frequency selective optical

pumping, and excite with 493 nm σ` polarized light pulse to |P1{2, F “ 1,mF “ 1y.

Upon decay and collection of σ`, σ´ polarized photons as H photons, we would get

an entangled state where the two qubit states |0y , |1y are entangled with photonic

frequency qubits. We would simply interfere two of these photons (from two differ-

ent atoms) on a beam splitter and perform appropriate detections to herald a Bell

state between the two atoms. This scheme would not only use decoherence resistant

frequency photons, but also avoid any of the motional syncing troubles required in

time-bin schemes and at the same time herald Bell states in hyperfine qubits which

already have superb coherence times.

9.2 Improving Rate: Cavity-Enhanced Repeater Nodes

The entanglement protocols discussed in this work have a success probability

that scales as Psuccess9R ¨ p2, where R is the entanglement attempt rate and p is

the end-to-end probability of detecting a single emitted photon. For small p, this

quadratic dependence severely limits the achievable entanglement rate. While alter-

native single-photon protocols can circumvent this, they typically do so by trading

fidelity for rate.

A more effective architecture to overcome this limitation involves the introduc-

tion of a central quantum repeater node between the two computational nodes. The
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purpose of this intermediary node, which must have a near-unity light collection and

detection efficiency (p « 1), would be to mediate and distribute entanglement be-

tween any two nodes. By placing the most efficient node in the center, the overall

success probability becomes linear in p, thereby dramatically increasing the net en-

tanglement rate. The repeater node would be dedicated to generating entangled pairs

between itself and another two nodes and would perform an entanglement swapping

procedure in the end to leave the desired atoms entangled. Such an architecture

would also simplify design challenges by physically seperating memory nodes and

repeater(communication) nodes. A high-finesse optical cavity, which can efficiently

couple photons from a quantum memory into a collection optic, would be necessary

for such a high-efficiency repeater.

9.3 Future Work: GHZ State Preparation

3-photon analyzer

Alice BobCleo

Figure 9.2: Setup for GHZ state generation: Single photons entangled with
their parent atoms in their polarization degree of freedom are collected and sent to
a 3-photon GHZ state analyzer via fibers. Upon a 3-photon coincidence and
detection at the analyzer (in the correct pattern), the three atoms in three different
chambers get projected into a GHZ state.
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Our three-node quantum network is an ideal platform for pioneering experiments

in distributed quantum information processing. A key near-term objective is the

preparation and verification of a Greenberger-Horne-Zeilinger (GHZ) state across

three atoms located in three separate modules. The protocol for this experiment

builds upon the polarization-based entanglement scheme developed in this work.

Photons entangled with the polarization state of their parent atom are collected from

each of the three nodes and interfered on a sequence of two polarizing beam splitters.

A successful three-photon coincidence detection event at specific output ports will

project the three remote atomic qubits into a shared GHZ state, demonstrating a

foundational capability for more complex quantum networks.
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