General Quantum Computing Articles
- General Quantum Computing Articles
- Quantum Error Correction
- Ion Trapology
- Coulomb-Motional Quantum Gates
- Trapped Ion Quantum Simulators
- Trapped Ion Micromotion
- Photonic Networks
- Ion Trap Scaling
- Motional Decoherence and Anomalous Heating
- Trapped Ion Microwave Clocks
- Trapped Ion Optical Clocks
- Ytterbium Ions
- Barium Ions and OMG
- “From Cbits to Qbits: Teaching Computer Scientists Quantum Mechanics,” N. D. Mermin, Amer. J. Phys. 71 (2003).
- “Introduction to Quantum Information, Computation and Communication,” S. Girvin, Yale PHYS 345 (2024)
- “Quantum Computing,” A. Steane, Rep. Prog. Phys. 61, 117 (1998).
- “Quantum Computing for High School Students,” S. Aaronson (2002).
Quantum Error Correction
- “Battling Deceoherence: The fault-tolerant quantum computer“, J. Preskill, Physics Today, June 1999, pp 24-30.
- “Quantum error correction: an introductory guide,” J. Roffe, Contemp. Phys. 60, 226 (2019).
- “Quantum Error Correction for Quantum Memories,” B. Terhal, Rev. Mod. Phys. 87, 307 (2015)
Reviews on Ion Trap Quantum Computing
- “Co-designing a Scalable Quantum Computer with Trapped Atomic Ions,” K. R. Brown, et al., Nature Quantum Information 2, 16034 (2016).
- “Scaling the Ion Trap Quantum Processor,” C. Monroe and J. Kim, Science 339, 1164 (2013).
- “Quantum Computing with Ions,” C. Monroe and D. Wineland, Scientific American (August, 2008), pp. 64-71.
- “Entangled states of trapped atomic ions,” R. Blatt and D. J. Wineland, Nature 453, 1008 (2008).
- “Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions“, D. J. Wineland, et al., J. Res. NIST 103, 259 (1998).
- “Experimental Primer on the Trapped Ion Quantum Computer,” D.J. Wineland, et al., Fortschritte der Physik 46 (1998).
- “Quantum dynamics of cold trapped ions with application to quantum computation,” D. F. V. James, Applied Physics B 66, 181 (1998).
- “The ion trap quantum information processor,” A. Steane, Appl. Phys. B. 64, 623 (1997).
Ion Trapology
- “Radiofrequency spectroscopy of stored ions I: Storage,” H.G. Dehmelt, Adv. At. Mol. Phys. 3, 53 (1967).
- “Exchange-Collision Technique for rf Spectroscopy of Stored Ions,” F. G. Major and H. G. Dehmelt, Phys. Rev. 170, 91-107 (1968). (Note: first 3.5 pages are an excellent condensed primer on rf traps)
- “Electromagnetic traps for charged and neutral particles“, W. Paul, Rev. Mod. Phys, 62, 531,(1990).
- “Realization of a Filter with Helical Components,” A. I. Zverev and H. J. Blinchikoff, IRE Trans. Compon. Parts, 99 (1961).
- “Coaxial Resonators with Helical Inner Conductor,” W. W. MacAlpine and R. O. Schildknecht, Proc. IRE, 2099 (1959).
- “Phase Transitions in Anisotropy Confined Ionic Crystals,” J. P. Schiffer Phys. Rev. Lett. 70, 818 (1992).
- “Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems,” D. J. Berkeland and M. G. Boshier, Phys. Rev. A 65, 033413 (2002).
Coulomb-Motional Quantum Gates
- “Quantum computations with cold trapped ions,” J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).
- “Multipartite entanglement of hot trapped ions,” K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
- “Entanglement and quantum computation with ions in thermal motion,” A. Sørensen and K. Mølmer, Phys. Rev. A 62, 022311 (2000).
- “Deterministic bell states and measurement of the motional state of two trapped ions,” E. Solano, et al., Phys. Rev. A 59, R2539 (1999).
- “Ion trap quantum computing with warm ions,”G.J. Milburn, S. Schneider and D. F. V. James, Fortschritte der Physik 48, 801-810 (2000).
- “Trapped ions in the strong excitation regime: Ion interferometry and nonclassical states,” J. F. Poyatos, et al., Phys. Rev. A 54, 1532 (1996).
- “Speed optimized Two-Qubit gates with laser coherent control techniques for ion trap quantum computing,” J. J. Garcia-Ripoll, et al., Phys. Rev. Lett. 91, 157901 (2003).
- “Coherent control of trapped ions using off-resonant lasers,” J. J. Garcia-Ripoll, et al., Phys. Rev. A 71, 062309 (2005).
- “Scaling ion trap quantum computation through fast qantum gates,” L.-M. Duan, Phys. Rev. Lett. 93, 100502 (2004).
Trapped Ion Quantum Simulators
- “Effective Quantum Spin Systems with Trapped Ions,” D. Porras, and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004).
- “Effective spin quantum phases in systems of trapped ions,” X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72, 063407 (2005).
- “Quantum Manipulation of Trapped Ions in Two Dimensional Coulomb Crystals,” D. Porras, and J. I. Cirac, Phys. Rev. Lett. 96, 250501 (2006).
- “Wigner crystals of ions as quantum hard drives,” J. M. Taylor and T. Calarco, Phys. Rev. A 78, 062331 (2008).
Trapped Ion Micromotion
- “Minimization of ion mocromotion in a Paul trap,” D. J. Berkeland, et al., J. Appl. Phys. 83, 5025 (1998).
- “Micromotion in trapped atom-ion systems,” L. Nguyen, et al., Phys. Rev. A 85, 052718 (2012).
- “Quantum Logic with a Few Trapped Ions“, C. Monroe, et al., in Trapped Charged Particles and Fundamental Physics (AIP, 1999), 378.
- “Deterministic Entanglement of Two Trapped Ions,” Q. A. Turchette, et al., Phys. Rev. Lett. 81, 3631 (1998).
Photonic Networks
- “Efficient high-fidelity quantum computation using matter qubits and linear optics,” S. Barrett and P. Kok, Phys. Rev. A 71, 060310 (2005).
- “Robust Long-Distance Entanglement and a Loophole-Free Bell Test with Ions and Photons,” C. Simon, W. Irvine, Phys. Rev. Lett. 91, 110405, (2003).
- “Creation of entangled states of distant atoms by interference,” C. Cabrillo, J. I. Cirac, P. Garcia-Fernandez, and P. Zoller, Phys. Rev. A, 59, 1025, (1999).
Ion Trap Scaling
- “Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects,” C. Monroe, et al., Phys. Rev. A 89, 022317 (2014).
- “Architecture for a large-scale ion-trap quantum computer,” D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002).
- “A scalable quantum computer with ions in an array of microtraps,” J. I. Cirac and P. Zoller, Nature 404, 579 (2000).
Motional Decoherence and Anomalous Heating
- “Heating of trapped ions from the quantum ground state,” Q. A. Turchette, et al., Phys. Rev. A 61, 063418 (2000).
- “Decoherence and decay of motional quantum states of a trapped atom coupled to engineered reservoirs,” Q. A. Turchette, et al., Phys. Rev. A 62, 053807 (2000).
- “Scaling and Suppression of Anomalous Heating in Ion Traps,” L. Deslauriers, et al., Phys. Rev. Lett. 97, 103007 (2006).
- “Temperature dependence of electric field noice above gold surfaces,” J. Labaziewicz, et al., Phys. Rev. Lett., 101, 180602 (2008).
- “Suppression of heating rates in cryogenic surface electrode ion traps“, J. Labaziewicz, et al., Phys. Rev. Lett., 100, 013001 (2008).
- “Electric-field noise from thermally activated fluctuators in a surface ion trap,” C. Noel, et al., Phys. Rev. A 99, 063427 (2019).
Trapped Ion Microwave Clocks
- “A 303-MHz frequency standard based on trapped Be+ ions,” J. J. Bollinger, et al., IEEE Trans. Inst. Meas. 40, 126 (1991).
- “Accurate measurement of the 12.6GHz “Clock” transition in trapped 171Yb+ ions,” PTH Fisk, et al., IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency 44, 344 (1997).
Trapped Ion Optical Clocks
- “Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks:Metrology at the 17th Decimal Place,” T. Rosenband, et al., Science 319, 1808 (2003).
- “High-Accuracy Optical Clock Based on the Octupole Transition in 171Yb+,” N. Huntemann, et al., Phys. Rev. Lett. 108, 090801 (2012).
Ytterbium Ions
- “Laser cooling and trapping of trapped Ytterbium ions using a four-level optical-excitation scheme,” A. S. Bell, et al., Phys. Rev. A 44, R20 (1991).
- “Observation of electric octupole transitionin a single ion,” M. Roberts, et al., Phys. Rev. Lett. 78, 1876 (1997).
- “Investigation of the 2S1/2–2D5/2 clock transition in a single ytterbium ion“, P. Taylor, et. al.,, Phys. Rev. A 56, 2699 (1997).
- “Measurement of the 2S1/2–2D5/2 clock transition in a single 171Yb+ ion“, M. Roberts, et al., Phys. Rev. A 60, 2867 (1999).
- “Manipulation and Detection of a Trapped Yb+ Hyperfine Qubit,” S. Olmschenk, et al., Phys. Rev. A 76, 052314 (2007).
Barium Ions and OMG
- “Spectroscopy of a Synthetic Trapped Ion Qubit (Ba-133),” D. Hucul, et al., Phys. Rev. Lett. 119, 100501 (2017).
- “Optical Barium Ion Qubit,” D. Yum, et al., JOSA B 34, 1632 (2017).
- “OMG! Blueprint for trapped ion quantum computing with metastable states,” D. T. C. Allcock, et al.,, Appl. Phys. Lett. 119, 214002 (2021).